JEE(Advanced) - 2017 TEST PAPER WITH SOLUTION

(HELD ON SUNDAY 21st MAY, 2017)

MATHEMATICS

SECTION-1: (Maximum Marks: 28)

- This section contains **SEVEN** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- For each question, marks will be awarded in one of the following categories:

Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is (are)

darkened.

Partial Marks: +1 For darkening a bubble corresponding to each correct option,

Provided NO incorrect option is darkened.

Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks : -2 In all other cases.

- for example, if (A), (C) and (D) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (A) and (D) will get +2 marks; and darkening (A) and (B) will get -2 marks, as a wrong option is also darkened
- 37. Which of the following is(are) NOT the square of a 3×3 matrix with real entries?

$$(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$(B) \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Ans. (**A**,**B**)

38. If a chord, which is not a tangent, of the parabola $y^2 = 16x$ has the equation 2x + y = p, and midpoint (h, k), then which of the following is(are) possible value(s) of p, h and k?

(A)
$$p = 5$$
, $h = 4$, $k = -3$

(B)
$$p = -1$$
, $h = 1$, $k = -3$

(C)
$$p = -2$$
, $h = 2$, $k = -4$

(D)
$$p = 2$$
, $h = 3$, $k = -4$

Ans. (D)

Sol. Equation of chord with mid point (h, k):

$$k.y - 16\left(\frac{x+h}{2}\right) = k^2 - 16h$$

$$\Rightarrow$$
 8x - ky + k² - 8h = 0

Comparing with 2x + y - p = 0, we get

$$k = -4$$
; $2h - p = 4$

only (D) satisfies above relation.

Let a, b, x and y be real numbers such that a - b = 1 and $y \ne 0$. If the complex number **39.** z = x + iy satisfies $Im\left(\frac{az + b}{z + 1}\right) = y$, then which of the following is(are) possible value(s) of x?

(A)
$$-1-\sqrt{1-v^2}$$

(B)
$$1 + \sqrt{1 + y^2}$$

(C)
$$1 - \sqrt{1 + y^2}$$

(A)
$$-1 - \sqrt{1 - y^2}$$
 (B) $1 + \sqrt{1 + y^2}$ (C) $1 - \sqrt{1 + y^2}$ (D) $-1 + \sqrt{1 - y^2}$

Ans. (A,D)

Sol. $\operatorname{Im}\left(\frac{az+b}{z+1}\right) = y \text{ and } z = x + iy$

$$\therefore \operatorname{Im}\left(\frac{a(x+iy)+b}{x+iy+1}\right) = y$$

$$\Rightarrow \operatorname{Im}\left(\frac{\left(ax+b+iay\right)\left(x+1-iy\right)}{\left(x+1\right)^{2}+v^{2}}\right)=y$$

$$\Rightarrow -y(ax + b) + ay(x + 1) = y((x + 1)^{2} + y^{2})$$

\Rightarrow (a - b)y = y((x + 1)^{2} + y^{2})

$$\Rightarrow (a-b)y = y((x+1)^2 + y^2)$$

$$y \neq 0$$
 and $a - b = 1$

$$\Rightarrow (x+1)^2 + y^2 = 1$$

$$\Rightarrow$$
 $x = -1 \pm \sqrt{1 - y^2}$

Let X and Y be two events such that $P(X) = \frac{1}{3}$, $P(X \mid Y) = \frac{1}{2}$ and $P(Y \mid X) = \frac{2}{5}$. Then 40.

(A)
$$P(X'|Y) = \frac{1}{2}$$

(B)
$$P(X \cap Y) = \frac{1}{5}$$

(C)
$$P(X \cup Y) = \frac{2}{5}$$

(D)
$$P(Y) = \frac{4}{15}$$

Ans. (**A**,**D**)

Sol. $P(x) = \frac{1}{2}$; $\frac{P(X \cap Y)}{P(Y)} = \frac{1}{2}$; $\frac{P(Y \cap X)}{P(Y)} = \frac{2}{5}$

from this information, we get

$$P(X \cap Y) = \frac{2}{15}$$
; $P(Y) = \frac{4}{15}$

$$\therefore P(X \cup Y) = \frac{1}{3} + \frac{4}{15} - \frac{2}{15} = \frac{7}{15}$$

$$P(\overline{X}/Y) = \frac{P(\overline{X} \cap Y)}{P(Y)} = \frac{P(Y) - P(X \cap Y)}{P(Y)}$$

$$\Rightarrow$$
 $P(\bar{X}/Y) = 1 - \frac{2/15}{4/15} = \frac{1}{2}$

- **41.** Let [x] be the greatest integer less than or equal to x. Then, at which of the following point(s) the function $f(x) = x\cos(\pi(x + [x]))$ is discontinuous?
 - (A) x = -1
- (B) x = 0
- (C) x = 2
- (D) x = 1

Ans. (A,C,D)

Sol. $f(x) = x \cos(\pi x + [x]\pi)$ $\Rightarrow f(x) = (-1)^{[x]} x \cos \pi x.$

Discontinuous at all integers except zero.

42. If 2x - y + 1 = 0 is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{16} = 1$, then which of the following CANNOT

be sides of a right angled triangle?

- (A) 2a, 4, 1
- (B) 2a, 8, 1
- (C) a, 4, 1
- (D) a, 4, 2

Ans. (B,C,D)

Sol. The line y = mx + c is tangent to hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, if $c^2 = a^2m^2 - b^2$

$$(1)^2 = 4a^2 - 16 \Rightarrow a^2 = \frac{17}{4}$$

$$\Rightarrow a = \frac{\sqrt{17}}{2}$$

For option (A), sides are $\sqrt{17}$, 4,1 (\Rightarrow Right angled triangle)

For option (B), sides are $\sqrt{17}$, 8,1 (\Rightarrow Triangle is not possible)

For option (C), sides are $\frac{\sqrt{17}}{2}$, 4,1 (\Rightarrow Triangle is not possible)

For option (D), sides are $\frac{\sqrt{17}}{2}$, 4,2 (\Rightarrow Triangle exist but not right angled)

- **43.** Let $f: \mathbb{R} \to (0,1)$ be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval (0, 1)?
 - (A) $e^x \int_0^x f(t) \sin t dt$

(B) $x^9 - f(x)$

(C) $f(x) + \int_0^{\frac{\pi}{2}} f(t) \sin t dt$

(D) $x - \int_{0}^{\frac{\pi}{2} - x} f(t) \cos t dt$

Ans. (B,D)

Sol. For option (A),

Let g(x) =
$$e^x - \int_0^x f(t) \sin t dt$$

:.
$$g'(x) = e^x - (f(x).\sin x) > 0 \ \forall \ x \in (0,1)$$

 \Rightarrow g(x) is strictly incrasing function.

Also, g(0) = 1

$$\Rightarrow$$
 g(x) > 1 \forall x \in (0,1)

: option (A) is not possible.

For option (B), let

$$k(x) = x^9 - f(x)$$

Now,
$$k(0) = -f(0) < 0$$
 (As $f \in (0,1)$)

Also,
$$k(1) = 1 - f(1) > 0$$
 (As $f \in (0,1)$)

$$\Rightarrow$$
 k(0). k(1) < 0

So, option(B) is correct.

For option (C), let

$$T(x) = f(x) + \int_{0}^{\frac{\pi}{2}} f(t) \cdot \sin t \, dt$$

$$\Rightarrow$$
 T(x) > 0 \forall x \in (0,1) (As $f \in$ (0,1))

so, option(C) is not possible.

For option (D),

Let
$$M(x) = x - \int_{0}^{\frac{\pi}{2} - x} f(t) \cos t dt$$

:.
$$M(0) = 0 - \int_{0}^{\pi/2} f(t) \cdot \cos t \, dt < 0$$

Also, M(1) =
$$1 - \int_{0}^{\frac{\pi}{2} - 1} f(t) \cdot \cos t dt > 0$$

$$\Rightarrow$$
 M(0). M(1) < 0

∴ option (D) is correct.

SECTION-2: (Maximum Marks: 15)

- This section contains **FIVE** questions.
- The answer to each question is a **SINGLE DIGIT INTEGER** ranging from 0 to 9, both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:

Full Marks : +3 If only the bubble corresponding to the correct answer is darkened.

Zero Marks : 0 In all other cases.

44. The sides of the right angled triangle are in arithmetic progression. If the triangle has area 24, then what is the length of its smallest side ?

Ans. 6

where d > 0, a > 0

 \Rightarrow length of smallest side = a – d

Now $(a + d)^2 = a^2 + (a - d)^2$

 \Rightarrow a(a - 4d) = 0

 $\therefore a = 4d$...(1)

(As a = 0 is rejected)

Also, $\frac{1}{2}$ a. (a-d) = 24

 \Rightarrow a(a - d) = 48 ...(2)

 \therefore From (1) and (2), we get a = 8, d = 2

Hence, length of smallest side

 \Rightarrow (a-d) = (8-2) = 6

45. For how many values of p, the circle $x^2 + y^2 + 2x + 4y - p = 0$ and the coordinate axes have exactly three common points ?

Ans. 2

Sol. We shall consider 3 cases.

Case I: When p = 0

(i.e. circle passes through origin)

Now, equation of circle becomes

 $x^2 + y^2 + 2x + 4y = 0$

Case II: When circle intersects x-axis at 2 distinct points and touches y-axis

Now
$$(g^2 - c) > 0$$
 & $f^2 - c = 0$

&
$$f^2 - c = 0$$

$$\Rightarrow$$
 1-(-p) > 0 & 4-(-p) = 0 \Rightarrow p = -4

&
$$4 - (-p) = 0$$

$$\Rightarrow$$
 p = -4

$$\Rightarrow p > -1$$

:. Not possible.

Case III: When circle intersects y-axis at 2 distinct points & touches x-axis.

Now,
$$g^2 - c = 0$$
 & $f^2 - c > 0$

&
$$f^2 - c > 0$$

$$\Rightarrow 1 - (-p) = 0$$
 & $4 - (-p) > 0$

&
$$4-(-p)>0$$

$$\Rightarrow$$
 p = -1

$$\Rightarrow p > -4$$

$$\therefore$$
 p = -1 is possible.

- \therefore Finally we conclude that p = 0, -1
- \Rightarrow Two possible values of p.
- For a real number α , if the system 46.

$$\begin{bmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

of linear equations, has infinitely many solutions, then $1 + \alpha + \alpha^2 =$

Ans. 1

Sol.
$$\Delta = 0 \Rightarrow 1(1 - \alpha^2) - \alpha(\alpha - \alpha^3) + \alpha^2(\alpha^2 - \alpha^2) = 0$$

 $(1 - \alpha^2) - \alpha^2 + \alpha^4 = 0$
 $(\alpha^2 - 1)^2 = 0 \Rightarrow \alpha = \pm 1$

but

at $\alpha = 1$ No solution so rejected

at $\alpha = -1$ all three equation become

$$x - y + z = 1$$
 (coincident planes)

$$\therefore 1 + \alpha + \alpha^2 = 1$$

47. Words of length 10 are formed using the letters A, B, C, D, E, F, G, H, I, J. Let x be the number of such words where no letter is repeated; and let y be the number of such words where exactly one letter is repeated twice and no other letter is repeated. Then, $\frac{y}{9x}$ =

Ans. 5

Sol.
$$x = 10!$$

$$y = {}^{10}C_1 {}^{9}C_8 \frac{10!}{2!}$$

$$\frac{y}{9x} = \frac{5.9.10!}{9.10!} = 5$$

48. Let $f: R \to R$ be a differentiable function such that f(0) = 0, $f\left(\frac{\pi}{2}\right) = 3$ and f'(0) = 1. If

$$g(x) = \int_{x}^{\frac{\pi}{2}} [f'(t) \csc t - \cot t \csc t f(t)] dt$$

for
$$x \in \left(0, \frac{\pi}{2}\right]$$
, then $\lim_{x \to 0} g(x) =$

Ans. 2

Sol.
$$g(x) = \int_{x}^{\pi/2} (f'(t)csect - f(t)csect \cot t)dt$$

$$= \int_{x}^{\pi/2} (f(t)\operatorname{cosect})'dt$$

$$= f\left(\frac{\pi}{2}\right) \csc\left(\frac{\pi}{2}\right) - \frac{f(x)}{\sin x} = 3 - \frac{f(x)}{\sin x}$$

$$\therefore \lim_{x \to 0} g(x) = 3 - \lim_{x \to 0} \frac{f(x)}{\sin x}; \text{ as } f'(0) = 1$$

$$\Rightarrow \lim_{x\to 0} g(x) = 3-1=2$$

SECTION-3: (Maximum Marks: 18)

• This section contains **SIX** questions of matching type.

• This section contains **TWO** tables (each having 3 columns and 4 rows)

• Based on each table, there are **THREE** questions

• Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is correct

• For each question, darken the bubble corresponding to the correct option in the ORS.

• For each question, marks will be awarded in one of the following categories:

Full Marks : +3 If only the bubble corresponding to the correct option is darkened.

Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks : -1 In all other cases

Column 1,2 and 3 contain conics, equation of tangents to the conics and points of contact, respectively.			
Column 1	Column 2	Column 3	
(I) $x^2 + y^2 = a^2$	(i) $my = m^2x + a$	(P) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$	
(II) $x^2 + a^2y^2 = a^2$	(ii) $y = mx + a\sqrt{m^2 + 1}$	(Q) $\left(\frac{-ma}{\sqrt{m^2+1}}, \frac{a}{\sqrt{m^2+1}}\right)$	
(III) $y^2 = 4ax$	(iii) $y = mx + \sqrt{a^2 m^2 - 1}$	(R) $\left(\frac{-a^2m}{\sqrt{a^2m^2+1}}, \frac{1}{\sqrt{a^2m^2+1}}\right)$	
$(IV) x^2 - a^2 y^2 = a^2$	(iv) $y = mx + \sqrt{a^2 m^2 + 1}$	(S) $\left(\frac{-a^2m}{\sqrt{a^2m^2-1}}, \frac{-1}{\sqrt{a^2m^2-1}}\right)$	

- **49.** The tangent to a suitable conic (Column 1) at $\left(\sqrt{3}, \frac{1}{2}\right)$ is found to be $\sqrt{3}x + 2y = 4$, then which of the following options is the only **CORRECT** combination ?
 - (A) (II) (iii) (R)
- (B) (IV) (iv) (S)
- (C) (IV) (iii) (S)
- (D) (II) (iv) (R)

Ans. (D)

Sol.
$$P\left(\sqrt{3}, \frac{1}{2}\right)$$
; tangent $\sqrt{3}x + 2y = 4$

$$\Rightarrow \left(\sqrt{3}\right)x + 4\left(\frac{1}{2}\right)y = 4 \text{ comparing with (II)}$$

$$\Rightarrow$$
 a = 2 : $y = mx + \sqrt{a^2m^2 + 1}$ is tangent for $m = -\frac{\sqrt{3}}{2}$ i.e (ii)

$$\therefore$$
 point of contact for $a = 2$, $m = -\frac{\sqrt{3}}{2}$ is R

50. If a tangent to a suitable conic (Column 1) is found to be y = x + 8 and its point of contact is (8,16), then which of the following options is the only **CORRECT** combination ?

(A) (III) (i) (P)

(B) (III) (ii) (Q)

(C) (II) (iv) (R)

(D) (I) (ii) (Q)

Ans. (A)

Sol. y = x + 8 is tangent \Rightarrow m = 1; P(8, 16)

Comparing tangent with (i) of column 2, m = 1 satisfied and a = 8 obtained which matches for point of contact (P) of column 3 and (III) of column I.

51. For $a = \sqrt{2}$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact (-1,1), then which of the following options is the only **CORRECT** combination for obtaining its equation?

(A) (II) (ii) (O)

(B) (III) (i) (P)

(C) (I) (i) (P)

(D) (I) (ii) (Q)

Ans. (D)

Sol. For $a = \sqrt{2}$ and point (-1,1) only I of column-1 satisfies. Hence equaiton of tangent is -x + y = 2 or $y = x + 2 \Rightarrow m = 1$ which matches with (ii) of column 2 and also with Q of column 3

Let $f(x) = x + \log_e x - x \log_e x$, $x \in (0,\infty)$.

* Column 1 contains information about zeros of f(x), f'(x) and f''(x).

* Column 2 contains information about the limiting behavior of f(x), f'(x) and f''(x) at infinity.

* Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column 5 contains information about increasing decreasing nature of $f(x)$ and $f'(x)$.			
Column 1	Column 2	Column 3	
(I) $f(x) = 0$ for some $x \in (1,e^2)$	(i) $\lim_{x\to\infty} f(x) = 0$	(P) f is increasing in $(0,1)$	
(II) $f'(x) = 0$ for some $x \in (1,e)$	(ii) $\lim_{x\to\infty} f(x) = -\infty$	(Q) f is decreasing in (e,e^2)	
(III) $f'(x) = 0$ for some $x \in (0,1)$	(iii) $\lim_{x\to\infty} f'(x) = -\infty$	(R) f' is increasing in $(0,1)$	
(IV) $f''(x) = 0$ for some $x \in (1,e)$	(iv) $\lim_{x\to\infty} f''(x) = 0$	(S) f' is decreasing in (e,e^2)	

52. Which of the following options is the only **CORRECT** combination?

(A) (IV) (i) (S)

(B) (I) (ii) (R)

(C) (III) (iv) (P)

(D) (II) (iii) (S)

Ans. (D)

53. Which of the following options is the only **CORRECT** combination?

(A) (III) (iii) (R)

(B) (I) (i) (P)

(C) (IV) (iv) (S)

(D) (II) (ii) (Q)

Ans. (D)

54. Which of the following options is the only **INCORRECT** combination?

(A) (II) (iii) (P)

(B) (II) (iv) (Q)

(C) (I) (iii) (P)

(D) (III) (i) (R)

Ans. (D)

Sol. 52. to 54.

$$f(x) = x + \ell nx - x \ell nx, x > 0$$

$$f'(x) = 1 + \frac{1}{x} - \ell \, \mathbf{n} \, \mathbf{x}$$

$$f''(x) = -\frac{1}{x^2} - \frac{1}{x} = \frac{-(x+1)}{x^2}$$

- (I) $f(1) f(e^2) < 0$ so true
- (II) f'(1) f'(e) < 0 so true
- (III) Graph of f'(x) so (III) is false
- (IV) Is false

As
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \left[1 + \frac{\ell n x}{x} - \ell n x \right] = -\infty$$

∴ (i) is false (ii) is true

$$\lim_{x\to\infty} f'(x) = -\infty \text{ so (iii) is true}$$

$$\lim_{x \to \infty} f''(x) = 0 \text{ so (iv) is true.}$$

- (P) f'(x) is positive in (0,1) so true
- (Q) f'(x) < 0 for in (e,e^2) so true

As $f'(x) < 0 \forall x > 0$ therefor R is false, S is true.

$$f(x) = x + \ell nx - x \ell nx$$

$$f'(x) = \frac{1}{x} - \ell nx = 0$$
 at $x = x_0$ where $x_0 \in (1,e)$

$$f''(x) = -\frac{1}{x^2} - \frac{1}{x} < 0 \ \forall \ x > 0 \Rightarrow f(x)$$
 concave down

