SET-3

Series SSO

कोड नं. 56/3/RU

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्र में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकृतम् अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें। कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है।

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number **24** to **26** are long answer questions and carry **5** marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.

1. निम्नलिखित युग्म में से कौन $S_N 1$ अभिक्रिया अधिक तीव्रता से करेगा :

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{Br}$$
 और $\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_3}$
$$\mid \\ \mathrm{Br}$$

Which would undergo S_N1 reaction faster in the following pair :

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{Br}$$
 and $\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_3}$ | Br

- 2. समुद्र के किनारे पर जहाँ नदी का जल मिलता है एक डेल्टा बन जाता है। क्यों?

 A delta is formed at the meeting point of sea water and river water.

 Why?
- 3. एक यौगिक का सूत्र क्या है जिसमें Y तत्त्व ccp जालक बनाता है और X के परमाणु चतुष्फलकीय रिक्तियों का 2/3 भाग घेरते हैं ?

What is the formula of a compound in which the element Y forms ccp lattice and atoms of X occupy $2/3^{rd}$ of tetrahedral voids?

4. सल्फर के किन्हीं दो ऑक्सोएसिडों के सूत्र लिखिए।

Write the formulae of any two oxoacids of sulphur.

दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{O} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ | \\ \operatorname{CH}_3 \end{array}$$

Write the IUPAC name of the given compound:

$$\begin{array}{c} \operatorname{CH_3}-\operatorname{CH}-\operatorname{CH_2}-\operatorname{O}-\operatorname{CH_2}-\operatorname{CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

- 6. (i) द्रव X और द्रव Y के मिलाने पर प्राप्त विलयन का आयतन कम हो जाता है। प्राप्त विलयन राउल्ट नियम से किस प्रकार का विचलन दर्शाता है ? द्रव X और द्रव Y के मिलाने पर तापमान में आप क्या परिवर्तन देखते हैं ?
 - (ii) क्या होता है जब हम रक्त कोशिका को जल (अल्प परासारी विलयन) में रखते हैं ? कारण दीजिए।

2

1

1

1

- (i) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?
- (ii) What happens when we place the blood cell in water (hypotonic solution)? Give reason.
- 7. जब $CuSO_4$ के विलयन में से 2 A की विद्युत् धारा प्रवाहित की जाती है, तो कैथोड पर 1.27 g कॉपर जमा होने में जो समय लगता है, उसका परिकलन कीजिए। (Cu का मोलर द्रव्यमान = 63.5 g mol^{-1} , 1 F = 96500 C mol^{-1})

Calculate the time to deposit 1.27 g of copper at cathode when a current of 2 A was passed through the solution of $CuSO_4$.

2

2

2

2

(Molar mass of $Cu = 63.5 \text{ g mol}^{-1}$, $1 \text{ F} = 96500 \text{ C mol}^{-1}$)

- 8. लैन्थैनॉयडों और ऐक्टिनॉयडों के रसायन के बीच एक समानता और एक अंतर लिखिए।
 Write one similarity and one difference between the chemistry of lanthanoids and that of actinoids.
- 9. निम्नलिखित अभिक्रियाओं में जो अभिकारक आवश्यक हैं, उन्हें लिखिए :
 - (i) $CH_2 = CH CH_2OH \xrightarrow{?} CH_2 = CH CHO$
 - (ii) $CH_3 COOH \xrightarrow{?} CH_3 CONH_2$

अथवा

निम्नलिखित यौगिकों को उनके निर्दिष्ट गुणधर्म के बढ़ते हुए क्रम के आधार पर व्यवस्थित कीजिए:

- (i) CH_3COCH_3 , $C_6H_5COCH_3$, CH_3CHO (नाभिकस्नेही संकलन अभिक्रिया के प्रति अभिक्रियाशीलता)
- (ii) $Cl-CH_2-COOH,\ F-CH_2-COOH,\ CH_3-COOH$ (अम्लीय व्यवहार)

Write the reagents required in the following reactions:

(i)
$$CH_2 = CH - CH_2OH \xrightarrow{?} CH_2 = CH - CHO$$

(ii)
$$CH_3 - COOH \xrightarrow{?} CH_3 - CONH_2$$

OR

Arrange the following compounds in increasing order of their property as indicated:

- (i) CH₃COCH₃, C₆H₅COCH₃, CH₃CHO (reactivity towards nucleophilic addition reaction)
- (ii) $Cl CH_2 COOH$, $F CH_2 COOH$, $CH_3 COOH$ (acidic character)

2

3

3

- **10.** (i) निम्नलिखित कॉम्प्लेक्स का आई.यू.पी.ए.सी. नाम लिखिए : $[\mathrm{Co}(\mathrm{NH_3})_5\mathrm{Cl}]^{2+}$
 - (ii) निम्नलिखित कॉम्प्लेक्स का सूत्र लिखिए :

पोटैशियम टेट्राक्लोराइडोनिकलेट(II)

(i) Write down the IUPAC name of the following complex : $[\text{Co(NH}_3)_5\text{Cl}]^{2+}$

(ii) Write the formula for the following complex:

 $Potassium\ tetrachloridonickelate (II)$

- 11. भौतिक-शोषण और रासायनिक-शोषण के बीच कोई तीन अंतर लिखिए।
 - Write any three differences between Physisorption and Chemisorption.
- 12. निम्नलिखित के लिए कारण दीजिए :
 - (i) मेथैनॉल की अपेक्षा फ़ीनॉल अधिक अम्लीय है।
 - (ii) ऐल्कोहॉलों में C O H आबंध कोण चतुष्फलकीय कोण (109°28') की अपेक्षा थोड़ा कम है।
 - (iii) $(CH_3)_3C O CH_3$, HI के साथ अभिक्रिया करने पर $(CH_3)_3C I$ और $CH_3 OH$ मुख्य उत्पाद के रूप में देता है न कि $(CH_3)_3C OH$ और $CH_3 I$.

Give reasons for the following:

- (i) Phenol is more acidic than methanol.
- (ii) The C-O-H bond angle in alcohols is slightly less than the tetrahedral angle (109°28′).
- (iii) $(CH_3)_3C-O-CH_3$ on reaction with HI gives $(CH_3)_3C-I$ and CH_3-OH as the main products and not $(CH_3)_3C-OH$ and CH_3-I .

56/3/RU 5 P.T.O.

13. 200 g जल में अवाष्पशील विलेय का 10 g घोलकर एक विलयन बनाया जाता है । 308 K पर इसका वाष्प दाब 31.84 mm Hg है । विलेय का मोलर द्रव्यमान परिकलित कीजिए । (शुद्ध जल का 308 K पर वाष्प दाब = 32 mm Hg)

A solution is prepared by dissolving 10 g of non-volatile solute in 200 g

A solution is prepared by dissolving 10 g of non-volatile solute in 200 g of water. It has a vapour pressure of 31·84 mm Hg at 308 K. Calculate the molar mass of the solute.

3

3

3

3

(Vapour pressure of pure water at 308 K = 32 mm Hg)

- 14. (i) उच्च शुद्धता वाले सिलिकॉन को प्राप्त करने के लिए जो परिष्करण की विधि काम में आती है, उसका नाम लिखिए।
 - (ii) कॉपर के निष्कर्षण में SiO_2 की क्या भूमिका होती है ?
 - (iii) झाग प्लवन प्रक्रम में अवनमक की क्या भूमिका होती है ?
 - (i) Name the method of refining to obtain silicon of high purity.
 - (ii) What is the role of SiO₂ in the extraction of copper?
 - (iii) What is the role of depressants in froth floatation process?
- 15. (i) निम्नलिखित में से कौन-सा एक पॉलीसैकेराइड है : स्टार्च, माल्टोस, फ्रक्टोस, ग्लूकोस
 - (ii) प्रोटीन के α -हेलिक्स और β -प्लीटेड शीट संरचनाओं के बीच एक अंतर लिखिए ।
 - (iii) विटामिन B_{12} की कमी से होने वाली बीमारी का नाम लिखिए ।
 - (i) Which one of the following is a polysaccharide: starch, maltose, fructose, glucose
 - (ii) Write one difference between α -helix and β -pleated sheet structures of protein.
 - (iii) Write the name of the disease caused by the deficiency of vitamin B_{12} .
- **16.** $2.5 \times 10^{-4} \text{ M}$ मेथैनोइक अम्ल की चालकता $5.25 \times 10^{-5} \text{ S cm}^{-1}$ है । इसकी मोलर चालकता और वियोजन-मात्रा को परिकलित कीजिए ।

दिया गया है : $\lambda^0(H^+) = 349.5 \text{ S cm}^2 \text{ mol}^{-1}$ और $\lambda^0(HCOO^-) = 50.5 \text{ S cm}^2 \text{ mol}^{-1}$.

Conductivity of 2.5×10^{-4} M methanoic acid is 5.25×10^{-5} S cm⁻¹. Calculate its molar conductivity and degree of dissociation.

Given : $\lambda^0(H^+) = 349.5 \ S \ cm^2 \ mol^{-1}$ and $\lambda^0(HCOO^-) = 50.5 \ S \ cm^2 \ mol^{-1}$.

l 7.	(i)	कॉम्प्लेक्स $[\mathrm{Cr}(\mathrm{H_2O})_6]\mathrm{Cl}_3$ द्वारा किस प्रकार की समावयवता दिखाई जाती है ?	
	(ii)	यदि $\Delta_{ m o}$ > P हो तो क्रिस्टल क्षेत्र सिद्धान्त के आधार पर ${ m d}^4$ आयन के लिए इलेक्ट्रॉनिक विन्यास लिखिए।	
	(iii)	$[\mathrm{CoF}_6]^{3-}$ का आकार और उसकी संकरण अवस्था लिखिए।	
		(Co का परमाणु क्रमांक = 27)	3
	(i)	What type of isomerism is shown by the complex $[Cr(H_2O)_6]Cl_3$?	
	(ii)	On the basis of crystal field theory, write the electronic configuration for d^4 ion if $\Delta_0 > P$.	
	(iii)	Write the hybridization and shape of $[CoF_6]^{3-}$.	
		(Atomic number of $Co = 27$)	
18.	निम्नि	नखित रूपांतरण कैसे किए जा सकते हैं :	3
	(i)	ऐनिलीन को ब्रोमोबेन्ज़ीन में	0
	(ii)	क्लोरोबेन्ज़ीन को 2-क्लोरोऐसीटोफीनोन में	
	, ,	क्लोरोएथेन को ब्यूटेन में	
		अथवा	
	क्या ह	ोता है जब	
	(i)	क्लोरोबेन्ज़ीन को $\mathrm{Cl}_2/\mathrm{FeCl}_3$ के साथ उपचारित किया जाता है,	
	(ii)	एथिल क्लोराइड को $ m AgNO_2^{}$ के साथ उपचारित किया जाता है,	
	(iii)	2-ब्रोमोपेंटेन को ऐल्कोहॉली KOH के साथ उपचारित किया जाता है ?	
	अपने	उत्तर के पक्ष में रासायनिक समीकरणों को लिखिए।	3
	How	can the following conversions be carried out:	
	(i)	Aniline to bromobenzene	
	(ii)	Chlorobenzene to 2-chloroacetophenone	
	(iii)	Chloroethane to butane	
		OR	

What happens when

- (i) chlorobenzene is treated with Cl₂/FeCl₃,
- (ii) ethyl chloride is treated with AgNO₂,
- (iii) 2-bromopentane is treated with alcoholic KOH?

Write the chemical equations in support of your answer.

- 19. (a) निम्नलिखित को कारण देते हुए स्पष्ट कीजिए :
 - (i) Cu+ जलीय विलयन में अस्थाई है।
 - (ii) संक्रमण धातुएँ कॉम्प्लेक्स यौगिक बनाती हैं ।
 - (b) निम्नलिखित समीकरण को पूर्ण कीजिए:

$$Cr_2O_7^{2-} + 8 H^+ + 3 NO_2^- \rightarrow 3$$

- (a) Account for the following:
 - (i) Cu⁺ is unstable in an aqueous solution.
 - (ii) Transition metals form complex compounds.
- (b) Complete the following equation:

$$\text{Cr}_2\text{O}_7^{2-} + 8 \text{ H}^+ + 3 \text{NO}_2^- \rightarrow$$

20. निम्नलिखित बहुलकों के एकलकों के नाम और संरचनाओं को लिखिए :

3

- (i) टेरीलीन
- (ii) बूना-S
- (iii) नीओप्रीन

Write the names and structures of the monomers of the following polymers:

- (i) Terylene
- (ii) Buna-S
- (iii) Neoprene

21. निम्नलिखित अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए :

(i)
$$CH_3 - C = O$$
 $\xrightarrow{H_2N - NH_2}$?

(ii)
$$C_6H_5 - CH_3$$
 (a) $KMnO_4 / KOH$?

(iii)
$$Br_2/FeBr_3$$
 ?

Predict the products of the following reactions:

(i)
$$CH_3 - C = O$$
 $\xrightarrow{H_2N - NH_2}$? CH_3

(ii)
$$C_6H_5 - CH_3$$
 (a) $KMnO_4 / KOH$?

(iii)
$$Br_2/FeBr_3$$
 ?

22. दिए गए दोषपूर्ण क्रिस्टल का परीक्षण कीजिए :

$$X^{+}$$
 Y^{-} X^{+} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-}

निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (i) उपर्युक्त दोष रससमीकरणमितीय (स्टॉइकियोमीट्रिक) है या अ-रससमीकरणमितीय (अन-स्टॉइकियोमीट्रिक)।
- (ii) इस प्रकार के दोष को किस पद से लिखते हैं ? एक यौगिक का उदाहरण दीजिए जो इस प्रकार का दोष दर्शाता है।
- (iii) इस प्रकार के दोष से क्रिस्टल के घनत्व पर क्या प्रभाव पड़ता है ?

3

Examine the given defective crystal:

$$X^+ \quad Y^- \quad X^+ \quad Y^- \quad X^+$$

$$Y^-$$
 O $Y^ X^+$ Y^-

$$X^+$$
 $Y^ X^+$ O X^+

$$Y^{-}$$
 X^{+} Y^{-} X^{+} Y^{-}

Answer the following questions:

- (i) Is the above defect stoichiometric or non-stoichiometric?
- (ii) Write the term used for this type of defect. Give an example of the compound which shows this type of defect.
- (iii) How does this defect affect the density of the crystal?
- 23. जवान बच्चों में मधुमेह और अवसाद (उदासी) की बढ़ती संख्या को देखकर, एक प्रसिद्ध स्कूल के प्रिंसिपल श्री चोपड़ा ने एक सेमिनार का आयोजन किया जिसमें अन्य प्रिंसिपलों और बच्चों के माता-पिताओं को आमंत्रित किया । यह निर्णय लिया गया कि स्कूलों में सड़े हुए खाने की वस्तुएँ बंद की जाएँ और स्वास्थ्यवर्धक वस्तुएँ जैसे सूप, लस्सी, दूध, आदि उपलब्ध कराई जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकाल की ऐसेम्बली के समय बच्चों को आधा घंटे का शारीरिक व्यायाम अनिवार्य रूप से कराया जाए । छः माह के पश्चात्, श्री चोपड़ा ने अधिकतर स्कूलों में फिर स्वास्थ्य परीक्षण कराया और बच्चों के स्वास्थ्य में अनुपम सुधार पाया गया ।

उपर्युक्त विवरण को पढ़कर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) श्री चोपड़ा द्वारा किन मूल्यों (कम-से-कम दो) को प्रदर्शित किया गया ?
- (ii) एक विद्यार्थी के रूप में, आप इस विषय में कैसे जागरूकता फैलाएँगे ?
- (iii) बिना डॉक्टर की सलाह के प्रति-अवसादक (ऐन्टि-डीप्रिसेन्ट) क्यों नहीं लेने चाहिए ?
- (iv) कृत्रिम मधुकारी पदार्थों के दो उदाहरण दीजिए ।

56/3/RU 10

Seeing the growing cases of diabetes and depression among young children, Mr. Chopra, the principal of one reputed school organized a seminar in which he invited parents and principals. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Chopra conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Chopra?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) Why should antidepressant drugs not be taken without consulting a doctor?
- (iv) Give two examples of artificial sweeteners.

24. जलीय विलयन में मेथिल ऐसीटेट के जल-अपघटन से निम्नलिखित परिणाम प्राप्त हुए :

t/s	0	10	20
[CH ₃ COOCH ₃]/mol L ⁻¹	0.10	0.05	0.025

- (a) जल की सान्द्रता स्थिर रखते हुए प्रदर्शित कीजिए कि यह एक छद्म (स्यूडो) प्रथम कोटि की अभिक्रिया है।
- (b) समयांतराल 10 से 20 सेकण्ड के बीच अभिक्रिया की औसत दर परिकलित कीजिए। (दिया गया है: log 2 = 0.3010, log 4 = 0.6021)

अथवा

- (a) एक अभिक्रिया $A + B \to P$ के लिए, दर दी जाती है $a = k [A] [B]^2$
 - (i) यदि B की सांद्रता दुगुनी कर दी जाए, तो अभिक्रिया की दर कैसे प्रभावित होती है ?
 - (ii) यदि A अधिक मात्रा में हो तो अभिक्रिया की कुल दर क्या होगी ?
- (b) एक प्रथम कोटि की अभिक्रिया 50% पूर्ण होने में 30 मिनट लेती है। इस अभिक्रिया का 90% पूर्ण होने में जो समय लगता है, उसका परिकलन कीजिए।

5

For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

t/s	0	10	20
[CH ₃ COOCH ₃]/mol L ⁻¹	0.10	0.05	0.025

- (a) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
- (b) Calculate the average rate of reaction between the time interval 10 to 20 seconds.

(Given: $\log 2 = 0.3010$, $\log 4 = 0.6021$)

OR.

- (a) For a reaction $A + B \rightarrow P$, the rate is given by Rate = $k [A][B]^2$
 - (i) How is the rate of reaction affected if the concentration of B is doubled?
 - (ii) What is the overall order of reaction if A is present in large excess?
- (b) A first order reaction takes 30 minutes for 50% completion. Calculate the time required for 90% completion of this reaction.
- 25. (a) निम्नलिखित के लिए कारण देते हुए स्पष्ट कीजिए :
 - (i) HF से HI तक अम्लीय व्यवहार बढता है।
 - (ii) ऑक्सीजन और सल्फर के बीच गलनांकों और क्वथनांकों में बहुत बड़ा अंतर है।
 - (iii) नाइट्रोजन पेन्टाहैलाइड नहीं बनाता है।
 - (b) निम्नलिखित की संरचनाएँ आरेखित कीजिए :
 - (i) ClF₃
 - (ii) XeF_4

5

अथवा

(i)	फ़ॉस्फ़ोरस का कौन-सा 3	भपररूप (ऐलोट्रोप)	अभिक्रियाशील	है और क्यों ?
(1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			6 -111 .

(ii) सुपरसोनिक जेट वायुयान ओज़ोन सतह को घटाने में कैसे उत्तरदायी हैं ?

$$(iii)$$
 F_2 की आबन्ध विघटन एन्थैल्पी Cl_2 की अपेक्षा कम है । क्यों $?$

(iv) मौसम विज्ञान के परीक्षणों के लिए गुब्बारों में कौन-सी उत्कृष्ट गैस का उपयोग किया जाता है ?

(v) निम्नलिखित समीकरण पूर्ण कीजिए:

$$XeF_2 + PF_5 \rightarrow$$

- (a) Account for the following:
 - (i) Acidic character increases from HF to HI.
 - (ii) There is a large difference between the melting and boiling points of oxygen and sulphur.
 - (iii) Nitrogen does not form pentahalide.
- (b) Draw the structures of the following:
 - (i) ClF₃
 - (ii) XeF₄

OR

- (i) Which allotrope of phosphorus is reactive and why?
- (ii) How are the supersonic jet aeroplanes responsible for the depletion of ozone layer?
- (iii) F_2 has lower bond dissociation enthalpy than Cl_2 . Why?
- (iv) Which noble gas is used in filling balloons for meteorological observations?
- (v) Complete the following equation:

$$XeF_2 + PF_5 \longrightarrow$$

56/3/RU

26. आण्विक सूत्र $C_7H_6O_2$ का एक ऐरोमैटिक यौगिक 'A' नीचे दर्शाए अनुसार एक अभिक्रिया श्रेणी में आती है। निम्नलिखित अभिक्रियाओं में A,B,C,D और E की संरचनाएँ लिखिए :

5

अथवा

- (a) जब बेन्ज़ीन डाइएज़ोनियम क्लोराइड निम्नलिखित अभिकारकों के साथ अभिक्रिया करता है तो प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :
 - (i) $H_3PO_2 + H_2O$
 - (ii) CuCN/KCN
 - (iii) H_2O
- (b) जलीय विलयन में उनके बढ़ते हुए क्षारीय व्यवहार के क्रम में निम्नलिखित को व्यवस्थित कीजिए :

$${\rm C_2H_5NH_2},\ ({\rm C_2H_5)_2NH},\ ({\rm C_2H_5)_3N}$$

(c) निम्नलिखित यौगिकों के युग्म में अन्तर करने के लिए एक सामान्य रासायनिक जाँच दीजिए :

$$C_6H_5 - NH_2$$
 और $C_6H_5 - NH - CH_3$ 5

An aromatic compound 'A' of molecular formula $C_7H_6O_2$ undergoes a series of reactions as shown below. Write the structures of A, B, C, D and E in the following reactions :

$$(C_7H_6O_2) \ A \xrightarrow{NH_3/\text{heat}} C_6H_5CONH_2 \xrightarrow{Br_2 + \text{NaOH}} B \xrightarrow{(CH_3CO)_2O} C$$

$$\downarrow \text{LiAlH}_4/\text{ether} \qquad \downarrow Br_2(\text{aq})$$

$$D \qquad E$$

OR

- (a) Write the structures of main products when benzene diazonium chloride reacts with the following reagents:
 - (i) $H_3PO_2 + H_2O$
 - (ii) CuCN/KCN
 - (iii) H_2O
- (b) Arrange the following in the increasing order of their basic character in an aqueous solution:

$$C_2H_5NH_2$$
, $(C_2H_5)_2NH$, $(C_2H_5)_3N$

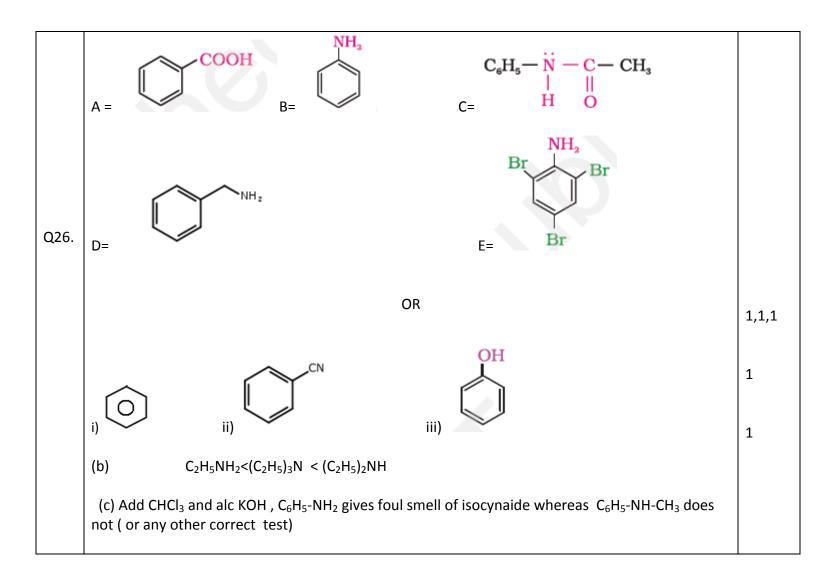
(c) Give a simple chemical test to distinguish between the following pair of compounds:

$$C_6H_5 - NH_2$$
 and $C_6H_5 - NH - CH_3$

CHEMISTRY MARKING SCHEME

2015

. NO.	Value points	MARKS
Q.1	CH ₃ -CH(Br)-CH ₃	1
Q.2	Due to coagulation of colloidal clay particles	1
Q.3	X_4Y_3	1
Q.4	H ₂ SO ₃ H ₂ SO ₄ H ₂ S ₂ O ₈ ,H ₂ SO ₅ (any two formulae)	1/2 + 1/2
Q.5	1-ethoxy-2-methylpropane	1
Q.6	(i) Negative deviation ,temperature will increase.	1/2 +1/2
	(ii) Blood cell will swell due to osmosis , water enters into the cell.	1/2+1/2
Q.7		
	Cu ²⁺ + 2e ⁻ → Cu	
	63.5 g Cu is deposited = 2x96500 C	
	1.27 g Cu is deposited = 2x96500x1.27/63.5 C = ixt (Q = ixt)	1
	t = 2x96500x1.27/63.5 x 2 = 1930s	1
	Or	
	by Faraday First law	
	m = zx i xt	1/2
	z = atomic mass/valencyxF	
	4.37 (3.5).2).4/2,00500	1/
	1.27 = 63.5x2xt/2x96500	1/2
	t = 1930 s	1
Q.8	Similarity: Both show contraction in size /Both show irregularity in their electronic	1
	configuration/Both are stable in +3oxidation state (any one)	
	(4)	
	Difference :Actinoids are mainly radioactive but lanthanoids are not/ Actinoids show wide range	1
	of oxidation states but lanthanoids do not /Actinoid contraction is greater than lanthanoid	
	contraction. (any other one similarity and one difference)	
Q.9	(i) PCC / Cu at 573 K	1
	(ii) NH ₃ , Δ (heat)	1
	OR	
Q9.	(i) C ₆ H ₅ COCH ₃ < CH ₃ COCH ₃ < CH ₃ CHO	1
	(ii) CH₃COOH <cl-ch₂-cooh <="" f-ch₂-cooh<="" td=""><td>1</td></cl-ch₂-cooh>	1
Q.10	(i) Pentaamminechloridocobalt(III) ion	1
	(ii) K ₂ [NiCl ₄]	1


Q.11	Physisorption : adsorbate is held by weak van der Waals' force	1,1,1
	non-specific	
	It forms multimolecular layer	
	Chemisorption: adsorbate molecules are held by strong forces like a chemical bond	
	It is specific	
	It forms unimolecular layer	
	(or any correct three points)	
Q.12	(i) Phenoxide ion is stabilized by resonance as compared to CH ₃ O / In phenol, oxygen acquires	1
	+ ve charge due to resonance and releases H ⁺ ion easily whereas there is no resonance in	
	methanol.	
	(ii) Due to lone pair-lone pair repulsion on oxygen.	1
	(ii) Due to lone pail lepuision on oxygen.	1
	(iii) $(CH_3)_3C^+$ is 3^0 carbo-cation which is more stable than CH_3^+ for S_N1 reaction.	1
Q.13	$\frac{p^0 - p}{p^0} = \frac{w_s x Msolvent}{M_s x Wsolvent}, s = solute$	1
	$(32-31.84)/32 = 10 \times 18 / Ms \times 200$	1
	$M_s = 180 \text{ g/mol}$	1
Q.14	(i) Zone refining	1
	(ii) SiO_2 act as flux to remove the impurity of Iron oxide	1
	(:::) Decrease to many out one time of orderide one female the firstly	1
	(iii) Depressants prevent one type of sulphide ore forming the froth with air bubble.	1
Q.15	(i) Starch.	1
Q.13	(i) Startin	
	(ii) α - Helix polypeptide chains are stabilized by intramolecular H-bondingwhereas β - pleated	
	sheet is stabilized by intermolecular H-bonding. (or any other difference)	1
0.16	(iii) Pernicious anaemia	1
Q.16	$\Lambda_{\rm m} = \frac{1000 x k}{M} \rm Scm^2 mol^{-1}$	1/2
	$\Lambda_{\rm m} = \frac{1000 \times 5.25 \times 10^{-5}}{2.5 \times 10^{-4}} \rm Scm^2 mol^{-1}$	
	2.0 A 10	1
	= 210Scm ² mol ⁻¹	
	$\Lambda_{\rm m}^{0}$ HCOOH = λ^{0} HCOO ⁻ + λ^{0} H ⁺	1/
	$(50.5 + 349.5) \text{ S cm}^2 \text{mol}^{-1} = 400 \text{ S cm}^2 \text{mol}^{-1}$	1/2
	$\alpha = \Lambda_{\rm m}/\Lambda_{\rm m}^{0}$	1
	$\alpha = 210/400 = 0.525$	

Q.17	(i) Hydration isomerism	1
	(ii) Electronic configuration ist _{2g} ⁴ / by diagram	1
	(iii) Hybridization is sp ³ d ² and shape is octahedral.	1/2 + 1/2
Q.18	(i)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	N_2X Cu_2X_2 Cu_2X_3 Cu_2X_3 Cu_2X_3 Cu_2X_3 Cu_3X_4 Cu_3X_4 Cu_3X_5	
	(ii)	
	Cl O Anhyd. AlCl ₃ CH ₃	1
	iii)CH ₃ CH ₂ Cl $\frac{Na}{dry\ ether}$ \rightarrow CH ₃ CH ₂ CH ₂ CH ₃	1
	OR	
Q18	(I) $\begin{array}{c} Cl \\ + Cl_2 \end{array} \xrightarrow{Anhyd. \ FeCl_3} \end{array} + \begin{array}{c} Cl \\ - Cl \end{array}$	1

	/::\	1
	(ii) CH₃CH₂Cl + AgNO₂ → CH₃CH₂ NO₂ + AgCl	1
	(iii) $CH_3CH_2CH_2CH(Br)CH_3 + KOH (alc.) \rightarrow CH_3CH_2CH=CHCH_3$	1
Q.19	(a)	
	(i) Because Cu ⁺ undergoes disproportionation as 2Cu ⁺ → Cu + Cu ²⁺	1
	(ii) Because of small size of metal, high ionic charge and availability of vacant d –orbital.	1
	(b) $\text{Cr}_2\text{O}_7^{2^-} + 8\text{H}^+ + 3\text{NO}_2^- \rightarrow 2\text{Cr}^{3^+} + 3\text{NO}_3^- + 4\text{H}_2\text{O}$ (Balanced equation only)	1
Q.20	(i) ethylene glycol HO-CH ₂ -CH ₂ -OH	1/2 +1/2
	HOOC—COOH Terephthalic acid	
	Terepritiant acid	
	(ii) 1,3- butadiene CH ₂ =CH-CH=CH ₂	
	CH = CH ₂	
		1/2 + 1/2
	Styrene	
	(iii) Chloroprene CH ₂ =C(Cl)-CH=CH ₂	1/2 , 1/2
	(Note: Half mark for name/s and half mark for structure/s in each case)	·
Q.21	СООН	1+1+1
	COOH	
	i) (CH ₃) ₂ C= N-NH ₂ ii) / benzoic acid iii)	
	/ m-bromobenzoic acid	
Q.22	(i) Stoichiometric defect	1
	(ii) Schottky defect e.g.NaCl (or any other example)	1/2 + 1/2
	(iii) Density of crystal decreases	1
Q.23	(i) Social awareness, Health conscious, Caring, empathy, concern. (or any other two values)	1/2 , 1/2
	(") Code of the distribution of the destruction and the distribution of the distributi	
	(ii) Cartoon display / street display/poster making (or any other correct answer)	1
	(iii) Wrong choice and over dose may be harmful	1
	(iii) Wrong choice and over dose may be harmful.	1
	(iv) Saccharin , Aspartame (or any other example)	1/2 + 1/2
<u> </u>	() () () () () () () () () ()	

Q.24	(a) $[A]_0 = 0.10 \text{ mol/L}$ $[A] = 0.05 \text{ mol/L}$ at time t = 10s	
	$k = 2.303 \log[A_0]$ t [A]	1/2
	$k = \underbrace{2.303}_{10 \text{ s}} \underbrace{\log 0.10}_{0.05}$ $k = 0.0693 \text{ s}^{-1}$	1
	t = 20s $k = 2.303 \log[A_0]$ t [A]	
	$k = 2.303 \log 0.10$ $20 \text{ s} \qquad 0.025$ $k = 0.0693 \text{ s}^{-1}$	1
	As the rate constant is same so it follows pseudo first order reaction.	1/2
	(b) Average rate of reaction = - Δ [R]/ Δ t	1/2
	= - [0.025 – 0.05 / 20 - 10]	1/2
	= $0.0025 \text{ mol } L^{-1}s^{-1}$	1
	OR	
Q24.	(a) (i) Rate of reaction becomes 4 times (ii) Over all order of reaction = 2	1
	(b) $t_{1/2} = 0.693$ k	
	30min = <u>0.693</u> k	
	$k = 0.0231 \text{min}^{-1}$	1

		1 .
	$k = 2.303 \log [A_0]$	1/2
	t [A]	
	$t = 2.303 \log 100$	
	0.0231 10	1/2
		/2
	1 222 1	
	t = <u>2.303</u> min	
	0.0231	
	+ 00 7min	
	t = 99.7min	1
Q.25	(a) (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic	1
	character observed.	1
	(ii)Oxygen exists as diatomic O ₂ molecule while sulphur as polyatomic S ₈	1
	(iii)Due to non- availability of d orbitals	1
	(b)	
	F	
	FF	
	. Xe	1.1
	F=F	1+1
	;) F ;;)	
	i) ii)	
	OR	
Q25.		
	(i) White Phosphorus, because it is less stable due to angular strain	
	(ii)Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.	1/2 , 1/2
	Or NO+O ₃ \rightarrow NO ₂ + O ₂	1
	(iii)due to small size of F, large inter electronic repulsion / electron- electron repulsion among the	
	lone pairs of fluorine	1
	(iv)Helium	1
	(v) $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$	
0.00		1
Q.26		
		1 x5
	<u>. </u>	

