Series SSO

कोड नं. Code No. 56/1/B

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें। कैल्कुलेटरों के उपयोग की अनुमित नहीं है।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number **24** to **26** are long answer questions and carry **5** marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. जब ${
 m AgNO_3}$ का विलयन ${
 m KI}$ के विलयन में डाला जाता है तब ${
 m AgI}$ का जो कोलॉइडी सॉल बनता है, उस पर किस प्रकार का आवेश (चार्ज) होता है ?

What is the type of charge on AgI colloidal sol formed when ${\rm AgNO_3}$ solution is added to KI solution ?

1

2. उस यौगिक का सूत्र क्या होता है जिसमें Y तत्त्व hcp जालक बनाता है और X के परमाणु अष्टफलकीय रिक्तियों के 1/3वें भाग को भरते हैं ?

What is the formula of a compound in which the element Y forms hcp lattice and atoms of X occupy $1/3^{rd}$ of octahedral voids?

- 3. क्लोरीन के किन्हीं दो ऑक्सोएसिडों के सूत्र लिखिए।

 Write the formulae of any two oxoacids of chlorine.
- 4. दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{array}{c} \mathrm{C_6H_5} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_3} \\ | \\ \mathrm{OH} \end{array}$$

Write the IUPAC name of the given compound:

$$\begin{array}{c} \mathrm{C_6H_5} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{CH_3} \\ | \\ \mathrm{OH} \end{array}$$

5. निम्नलिखित युग्म में से कौन ${
m S}_{
m N}2$ अभिक्रिया अधिक तीव्रता से करेगा :

$$\mathrm{CH_3}-\mathrm{CH}-\mathrm{CH_2}-\mathrm{CH_2}-\mathrm{Br}$$
 और $\mathrm{CH_3}-\mathrm{CH_2}-\mathrm{CH}-\mathrm{CH_2}-\mathrm{Br}$
$$\mid \\ \mathrm{CH_3} \qquad \qquad \mathrm{CH_3}$$

Which would undergo $S_N 2$ reaction faster in the following pair :

$$\rm CH_3-CH-CH_2-CH_2-Br$$
 and $\rm CH_3-CH_2-CH-CH_2-Br$
$$| \\ \rm CH_3 \\ CH_3$$

1

1

6. निम्नलिखित अभिक्रियाओं में जो अभिकारक प्रयुक्त होते हैं, उनके नाम लिखिए :

(i)
$$C_6H_5 - COC1 \xrightarrow{?} C_6H_5 - CHO$$

(ii)
$$CH_3 - COONa \xrightarrow{?} CH_4$$

अथवा

निम्नलिखित यौगिकों को उनके सामने दिए गए संकेत के अनुसार उनके गुणधर्म के बढ़ते हुए क्रम में व्यवस्थित कीजिए : 2

2

2

(i) CH_3COCH_3 , $C_6H_5 - CO - C_6H_5$, CH_3CHO (नाभिकस्नेही संकलन अभिक्रिया के प्रति सक्रियता)

Name the reagents used in the following reactions:

(i)
$$C_6H_5 - COC1 \xrightarrow{?} C_6H_5 - CHO$$

(ii)
$$CH_3 - COONa \xrightarrow{?} CH_4$$

OR

Arrange the following compounds in increasing order of their property as indicated:

- (i) CH_3COCH_3 , $C_6H_5 CO C_6H_5$, CH_3CHO (reactivity towards nucleophilic addition reaction)
- 7. (i) ऐक्टिनॉयडें विस्तृत परास में उपचयन अवस्थाएँ क्यों दर्शाती हैं ?
 - (ii) ऐक्टिनॉयड संकुचन अपेक्षाकृत लैन्थैनॉयड संकुचन से बड़ा क्यों है ?
 - (i) Why do actinoids show wide range of oxidation states?
 - (ii) Why is actinoid contraction greater than lanthanoid contraction?

4

8. जब $Ni(NO_3)_2$ के विलयन में से 5 Λ की विद्युत् धारा प्रवाहित की जाती है तो कैथोड पर $1\cdot17$ g Ni जमा होने में जो समय लगता है, उसका परिकलन कीजिए।

(Ni का मोलर द्रव्यमान = 58.5 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$)

2

Calculate the time to deposit 1.17 g of Ni at cathode when a current of 5 A was passed through the solution of Ni(NO₃)₂.

(Molar mass of Ni = 58.5 g mol^{-1} , 1 F = 96500 C mol^{-1})

- 9. (i) निम्नलिखित कॉम्प्लेक्स का आई.यू.पी.ए.सी. नाम लिखिए : ${
 m K}_3[{
 m Fe}({
 m CN})_6]$
 - (ii) निम्नलिखित कॉम्प्लेक्स का सूत्र लिखिए : पेन्टाऐम्मीननाइट्राइटो-N-कोबाल्ट(III)

2

2

P.T.O.

- (i) Write down the IUPAC name of the following complex : $K_3[Fe(CN)_6] \label{eq:K3}$
- (ii) Write the formula for the following complex:

 Pentaamminenitrito-N-cobalt(III)
- 10. (i) द्रव X और द्रव Y को मिलाने पर, प्राप्त विलयन का आयतन बढ़ जाता है । प्राप्त विलयन राउल्ट नियम से किस प्रकार का विचलन दर्शाता है ? द्रव X और द्रव Y को मिलाने के पश्चात् आप तापमान में क्या परिवर्तन पाते हैं ?
 - (ii) परासरण की दिशा कैसे उलटी (उत्क्रमित की) जा सकती है ? उत्क्रम परासरण का एक उपयोग लिखिए।

(i) On mixing liquid X and liquid Y, the volume of the resulting solution increases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?

(ii) How can the direction of osmosis be reversed? Write one use of reverse osmosis.

11.	(i)	निम्नलिखित में से कौन-सा ओलिगोसैकैराइड है : स्टार्च, माल्टोस, फ्रक्टोस, ग्लूकोस	
	(ii)	DNA और RNA में एक अंतर लिखिए ।	
	(iii)	विटामिन B_1 की कमी से होने वाली बीमारी का नाम लिखिए।	3
	(i)	Which one of the following is an oligosaccharide: starch, maltose, fructose, glucose	
	(ii)	Write one difference between DNA and RNA.	
	(iii)	Write the name of the disease caused by the deficiency of Vitamin B_1 .	
12.	निम्नलि	खित अभिक्रिया के लिए $ extbf{E}_{ ext{de}}^\circ$ का परिकलन $25^\circ ext{C}$ पर कीजिए :	3
		$\mathrm{A} + \mathrm{B}^{2+} \left(0.001\;\mathrm{M}\right) \longrightarrow \mathrm{A}^{2+} \left(0.0001\;\mathrm{M}\right) + \mathrm{B}$	
	दिया ग	या है : $E_{\text{Heq}} = 2.6805$, $1 \text{ F} = 96500 \text{ C mol}^{-1}$	
	Calcu	late $\operatorname{E}^{\circ}_{\operatorname{cell}}$ for the following reaction at 25°C :	
		$A + B^{2+} (0.001 \text{ M}) \longrightarrow A^{2+} (0.0001 \text{ M}) + B$	
	Given	$E_{cell} = 2.6805, 1 F = 96500 C mol^{-1}$	
13.	निम्नलि	खित के बीच अंतर कीजिए :	3
	(i)	विलयन और कोलॉइड	
	(ii)	समांगी उत्प्रेरण और विषमांगी उत्प्रेरण	
	(iii)	O/W इमल्शन और W/O इमल्शन	
	Differ	entiate between the following:	
	(i)	Solution and Colloid	
	(ii)	Homogeneous catalysis and Heterogeneous catalysis	
	(iii)	O/W emulsion and W/O emulsion	

14. 95 g जल में एक अवाष्पशील विलेय का 5 g घोलकर एक विलयन तैयार किया गया है। 25°C पर इसका वाष्प दाब 23·375 mm Hg है। विलेय का मोलर द्रव्यमान परिकलित कीजिए। (शुद्ध जल का वाष्प दाब 25°C पर 23·75 mm Hg है)

A solution is prepared by dissolving 5 g of non-volatile solute in 95 g of water. It has a vapour pressure of 23·375 mm Hg at 25°C. Calculate the molar mass of the solute. (Vapour pressure of pure water at 25°C is 23·75 mm Hg)

- 15. (i) मर्करी जैसे कम क्वथनांक वाले धातू के परिष्करण की विधि का नाम दीजिए।
 - (ii) झाग प्लवन विधि में पाइन ऑइल की क्या भूमिका होती है ?
 - (iii) यदि प्राप्त धातु द्रव अवस्था में होती है, तो धातु ऑक्साइड का धातु में अपचयन सरल हो जाता है। क्यों ?
 - (i) Name the method of refining to obtain low boiling metal like mercury.
 - (ii) What is the role of pine oil in froth floatation process?
 - (iii) Reduction of metal oxide to metal becomes easier if the metal obtained is in liquid state. Why?
- 16. दिए गए दोषपूर्ण क्रिस्टल की जाँच कीजिए:

$$X^{+}$$
 Y^{-} X^{+} Y^{-} Y^{+} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-} Y^{-}

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) उपर्युक्त दोष रससमीकरणिमतीय (स्टॉइकियोमीट्रिक) है या अ-रससमीकरणिमतीय (अन-स्टॉइकियोमीट्रिक) ।
- (ii) इस प्रकार के दोष के लिए किस पद का उपयोग होता है, उसे लिखिए।
- (iii) सिल्वर हैलाइडें इस प्रकार का दोष क्यों दिखलाती हैं ?

3

3

Examine the given defective crystal:

$$X^{+}$$
 Y^{-} X^{+} Y^{-} Y^{+} Y^{-} Y^{-}

Answer the following questions:

- (i) Is the above defect stoichiometric or non-stoichiometric?
- (ii) Write the term used for this type of defect.
- (iii) Why do silver halides show this type of defect?

17. निम्नलिखित अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए :

(i)
$$CH_3 - C = O$$
 \longrightarrow ?

(ii)
$$C_6H_5 - MgBr$$
 $\xrightarrow{(a) CO_2}$?

(iii)
$$CH_3 - CN$$
 $LiAlH_4$?

Predict the products of the following reactions:

(i)
$$CH_3 - C = O$$
 \longrightarrow ?

(ii)
$$C_6H_5 - MgBr$$
 $\xrightarrow{\text{(a) CO}_2}$?

(iii)
$$CH_3 - CN$$
 \longrightarrow $LiAlH_4$

3

3

- (i) ग्लिप्टैल
- (ii) टेफ़्लॉन
- (iii) नाइलॉन-6

Write the names and structures of the monomers of the following polymers:

- (i) Glyptal
- (ii) Teflon
- (iii) Nylon-6
- **19.** (i) प्रकृति में MnO क्षारीय है जबिक ${\rm Mn_2O_7}$ अम्लीय है । क्यों ?
 - (ii) संक्रमण धातुएँ मिश्रधातु बनाती हैं । क्यों ?
 - (iii) निम्नलिखित समीकरण को पूर्ण कीजिए :

2 MnO
$$_2$$
 + 4 KOH + O $_2$ \rightarrow

- (i) MnO is basic whereas Mn_2O_7 is acidic in nature. Why?
- (ii) Transition metals form alloys. Why?
- (iii) Complete the following equation:

2 MnO
$$_2$$
 + 4 KOH + O $_2$ \rightarrow

- **20.** (i) कॉम्प्लेक्स $[Ag(NH_3)_2][Ag(CN)_2]$ किस प्रकार की समावयवता दर्शाता है ?
 - (ii) यदि $\Delta_{
 m o} < P$ हो तो क्रिस्टल क्षेत्र सिद्धान्त के अनुसार ${
 m d}^4$ आयन का इलेक्ट्रॉनिक विन्यास लिखिए ।
 - (iii) $[Ni(CN)_4]^{2-}$ का संकरण और आकार लिखिएह्म (Ni का परमाणु क्रमांक = 28)
 - (i) What type of isomerism is shown by the complex $[\mathrm{Ag}(\mathrm{NH_3})_2][\mathrm{Ag}(\mathrm{CN})_2]~?$
 - (ii) On the basis of crystal field theory, write the electronic configuration for d^4 ion if $\Delta_0 < P$.
 - (iii) Write the hybridization and shape of $[Ni(CN)_4]^{2-}$. (Atomic number of Ni = 28)

निम्नलिखित के लिए कारण दीजिए: 21. 3 $\mathrm{S}_{\mathrm{N}}1$ अभिक्रिया के प्रति बेन्ज़िल क्लोराइड अधिक अभिक्रियाशील है । (i) 2-ब्रोमोब्यूटेन ध्रवण घूर्णक है परन्तु 1-ब्रोमोब्यूटेन ध्रवण अघूर्णक है। (ii) हैलोऐरीनों में इलेक्टॉनस्नेही (इलेक्टोफिलिक) अभिक्रियाएँ धीमी होती हैं। (iii) Give reasons for the following: (i) Benzyl chloride is highly reactive towards the S_N1 reaction. (ii) 2-bromobutane is optically active but 1-bromobutane is optically inactive. (iii) Electrophilic reactions in haloarenes occur slowly. निम्नलिखित का रूपांतरण आप कैसे करेंगे . 22. 3 ऐनिलीन को फीनॉल में (i) प्रोप-1-ईन को प्रोपेन-1-ऑल में (ii) ऐनिसोल को 2-मेथॉक्सीटॉलुईन में (iii) अथवा क्या होता है जब : 573 K पर एथेनॉल को Cu के साथ उपचारित किया जाता है. (i) CH3COC1 / निर्जलीय AlCl3 के साथ फ़ीनॉल को उपचारित किया जाता है, (ii) NaOCH3 के साथ एथिल क्लोराइड को उपचारित किया जाता है ? (iii) अपने उत्तर के पक्ष में रासायनिक समीकरणों को लिखिए । 3 How do you convert the following: (i) Aniline to phenol (ii) Prop-1-ene to Propan-1-ol (iii) Anisole to 2-methoxytoluene OR What happens when (i) ethanol is treated with Cu at 573 K, (ii) phenol is treated with CH₃COCl / anhydrous AlCl₃, ethyl chloride is treated with NaOCH₃? (iii) Write chemical equations in support of your answer.

- 23. एक प्रसिद्ध स्कूल के प्रिंसिपल श्री राय ने मधुमेह और अवसाद (उदासी) जैसे गंभीर विषय पर विचार के लिए एक सेमिनार का आयोजन किया जिसमें उन्होंने बच्चों के माता-पिता तथा अन्य प्रिंसिपलों को आमंत्रित किया । यह निर्णय किया गया कि सड़े हुए भोजन स्कूलों में प्रतिबन्धित किए जाएँ और स्वास्थ्यवर्धक भोज्य पदार्थ जैसे सूप, लस्सी, दूध, आदि स्कूलों की कैंटीनों में उपलब्ध कराए जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकालीन ऐसेम्बली के समय बच्चों को अनिवार्य रूप से आधा घंटे का शारीरिक श्रम कराया जाए । छः माह के पश्चात्, श्री राय ने अधिकतर स्कूलों में फिर निरीक्षण कराया और बच्चों के स्वास्थ्य में अद्भुत सुधार पाया गया । उपर्युक्त प्रकरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए:
 - (i) श्री राय द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
 - (ii) एक विद्यार्थी के रूप में, आप इन मूल्यों के प्रति कैसे जागरूकता फैलाएँगे ?
 - (iii) शांतिकारक ड्रग क्या होते हैं ? एक उदाहरण दीजिए ।
 - (iv) ऐस्पर्टेंम का उपयोग ठंडे भोजन और पेय पदार्थों तक ही सीमित क्यों रखा जाता है ?

Mr. Roy, the principal of one reputed school organized a seminar in which he invited parents and principals to discuss the serious issue of diabetes and depression in students. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Roy conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Roy?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are tranquilizers? Give an example.
- (iv) Why is use of aspartame limited to cold foods and drinks?

56/1/B 11 P.T.O.

24. जलीय विलयन में मेथिल ऐसीटेट के जल-अपघटन से निम्नलिखित परिणाम प्राप्त हुए :

t/s	0	20	40
$[\mathrm{CH_3COOCH_3}]/\mathrm{mol}\ \mathrm{L}^{-1}$	0.40	0.20	0.10

5

5

- (a) जल की सान्द्रता स्थिर रखते हुए प्रदर्शित कीजिए कि यह एक छद्म (स्यूडो) प्रथम कोटि की अभिक्रिया है।
- (b) समयांतराल 20 से 40 सेकण्ड के बीच अभिक्रिया की औसत दर परिकलित कीजिए।

अथवा

- (a) निम्नलिखित पदों को परिभाषित कीजिए:
 - (i) संघट्टन आवृत्ति
 - (ii) दर स्थिरांक (k)
- (b) जब तापमान $300~\rm K$ से $350~\rm K$ में परिवर्तित हो जाता है तो प्रथम कोटि की अभिक्रिया का दर स्थिरांक 4×10^{-2} से 24×10^{-2} तक बढ़ जाता है । सिक्रयण ऊर्जा (E_a) परिकलित कीजिए ।

 $(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021, \log 6 = 0.7782)$

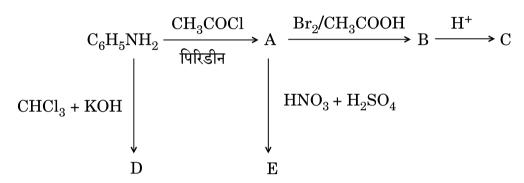
For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained:

t/s	0	20	40
$[\mathrm{CH_3COOCH_3}]/\mathrm{mol}\ \mathrm{L}^{-1}$	0.40	0.20	0.10

- (a) Show that it follows pseudo first order reaction, as the concentration of water remains constant.
- (b) Calculate the average rate of reaction between the time interval 20 to 40 seconds.

OR

- (a) Define the following terms:
 - (i) Collision frequency
 - (ii) Rate constant (k)
- (b) The rate constant of a first order reaction increases from 4×10^{-2} to 24×10^{-2} when the temperature changes from 300 K to 350 K. Calculate the energy of activation (E_a).


 $(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021, \log 6 = 0.7782)$

25.	(a)	निम्नलिखित को कारण देकर समझाइए :	
		(i) Bi(V) अपेक्षाकृत $Sb(V)$ से अधिक प्रबल उपचायक है ।	
		(ii) $H-O-Cl$ से $H-O-I$ दुर्बलतर अम्ल है ।	
		$ m (iii)~~H_2O$ से $ m H_2S$ तक आबन्ध कोण घटता है ।	
	(b)	निम्नलिखित की संरचनाएँ आरेखित कीजिए :	
		(i) SF_4	
		(ii) XeF_2	5
		अथवा	
	(i)	नमी में PCl ₅ धूआँ क्यों देता है ?	
	(ii)	सामान्य तापमान पर सल्फर का कौन-सा अपररूप (ऐलोट्रॉप) स्थाई होता है ?	
	(iii)	क्लोरीन जल का रखने पर पीला रंग धीरे-धीरे कम होने लगता है। क्यों ?	
	(iv)	$ m H_{3}PO_{3}$ की असमानुपातन अभिक्रिया लिखिए ।	
	(v)	निम्नलिखित समीकरण को पूर्ण कीजिए :	
		$\mathrm{F_2} + \mathrm{H_2O} \rightarrow $	5
	(a)	Account for the following:	
		$(i) Bi(V) \ is \ a \ stronger \ oxidizing \ agent \ than \ Sb(V).$	
		(ii) $H - O - I$ is a weaker acid than $H - O - Cl$.	
		(iii) Bond angle decreases from H_2O to H_2S .	
	(b)	Draw the structures of the following:	
		(i) SF_4	
		(ii) XeF_2	
		OR	

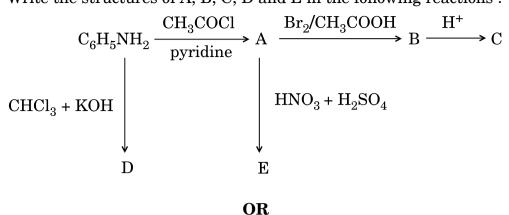
- (i) Why does PCl₅ fume in moisture?
- (ii) Write the name of the allotrope of sulphur which is stable at room temperature.
- (iii) Chlorine water on standing loses its yellow colour. Why?
- (iv) Write the disproportionation reaction of H₃PO₃.
- (v) Complete the following equation:

$$F_2 + H_2O \rightarrow$$

26. निम्नलिखित अभिक्रियाओं में A, B, C, D और E की संरचनाएँ लिखिए :

अथवा

- (a) जब बेन्ज़ीन डाइएज़ोनियम क्लोराइड निम्नलिखित अभिकारकों से अभिक्रिया करता है तो जो मुख्य उत्पाद प्राप्त होते हैं, उनकी संरचनाएँ लिखिए :
 - (i) KI
 - (ii) CH₃CH₂OH
 - (iii) Cu/HCl
- (b) निम्नलिखित को जलीय विलयन में उनके क्षारीय व्यवहार के बढ़ते हुए क्रम में व्यवस्थित कीजिए:


(c) यौगिकों के निम्नलिखित युग्म में अंतर करने के लिए एक सामान्य रासायनिक जाँच दीजिए :

$$C_6H_5 - NH_2$$
 और $CH_3 - NH_2$

5

5

Write the structures of A, B, C, D and E in the following reactions:

- (a) Write the structures of the main products when benzene diazonium chloride reacts with the following reagents:
 - (i) KI
 - (ii) CH₃CH₂OH
 - (iii) Cu/HCl
- (b) Arrange the following in the increasing order of their basic character in an aqueous solution:

$$CH_3NH_2$$
, $(CH_3)_2NH$, $(CH_3)_3N$

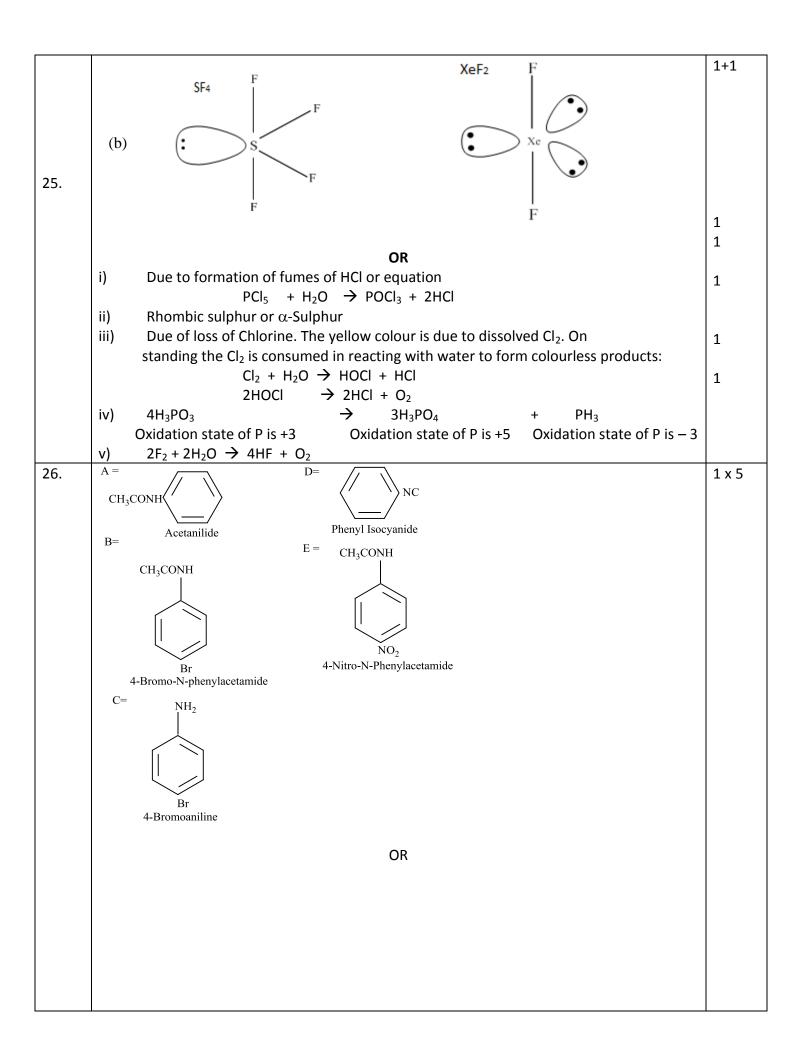
(c) Give a simple chemical test to distinguish between the following pair of compounds:

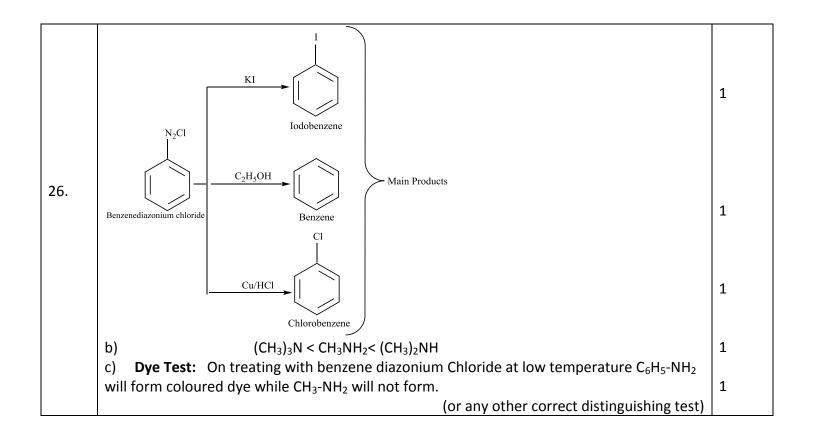
$$C_6H_5 - NH_2$$
 and $CH_3 - NH_2$

CHEMISTRY MARKING SCHEME

Bhubaneswar – 2015

Set 1 - Code No. 56/1/B


Ques.	Value points	Marks
1.	Negative charge	1
2.	XY ₃	1
3.	HOCI, HOCIO, HOCIO ₂ , HOCIO ₃ (Any two)	1/2 +1/2
4.	1-Phenylpropan-2-ol	1
5.	CH ₃ – CH – CH ₂ – CH ₂ – Br	1
6.	(i) H_2 / Pd-BaSO $_4$ (ii) NaOH/CaO , Δ	1 1
6.	(i) $C_6H_5 CO C_6H_5 < CH_3COCH_3 < CH_3CHO$ (ii) $CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	1
7.	(i) Due to comparable energies of 5f, 6d and 7s orbitals .	1
	(ii) Because 5f electrons have poorer shielding effect than 4f electrons.	1
8.	Formula: $w = z \times i \times t$ $time \ taken \ in \ sec = \frac{w \times Valance \times 96500}{Mol \ Mass \times Current \ in \ Amp}$	1/2
	Substituting the values in the formula we get: $time taken in sec = \frac{1.17 g \times 2 \times 96500 C mol^{-1}}{58.5 g mol^{-1} \times 5 amp}$ $time taken in sec = \frac{225810}{292.5}$	1
	t=772 s (Or by any other correct method)	1/2
9.	(i) Potassium hexacyanidoferrate (III)	1
	(ii) $[Co(NH_3)_5 NO_2]^{2+}$	1
10.	(i) Positive deviation, lowering of temperature or absorption of heat. (ii) By applying an external pressure greater than the osmotic pressure on the solution or $P>\pi$	½ ,½ ½ ,


	Reverse osmosis is used in desalination of hard water / sea water.	1/2
11.	(i) Maltose	1
	 (ii) • Sugar Present in DNA is Deoxyribose whereas in RNA it is Ribose • Thymine is present in DNA whereas in RNA Uracil is present (Any one) (iii) Beri-Beri 	1
4.2		1
12.	$E_{ceii} = E_{ceii}^{0} - \frac{0.0591}{nF} \log \frac{[A^{2+}]}{[B^{2+}]}$	1
	$2.6805 = E_{cell}^{0} - \frac{0.059}{2} V \log [0.0001]$ [0.001]	1
	$2.6805 = E_{\text{cell}}^{0} - \underline{0.059}_{\text{cell}} \text{ V log } 10^{-1} = E_{\text{cell}}^{0} - \underline{0.059}_{\text{Cell}} \text{ V} $ (-1) $2.6805 = E_{\text{cell}}^{0} + 0.0295 \text{ V}$	
	$E_{\text{cell}}^{0} = 2.6805 - 0.0295$	
	$E_{cell}^{0} = 2.6510 \text{ V}$	1
13.	(i) Solution is homogeneous colloid is heterogeneous In solution the size of particles (solute) is less than 1 nm whereas in colloids the range of size of particles is $1 - 1000$ nm (10^{-9} to 10^{-6} m)(Any one point)	1
	(ii) In homogeneous catalysis the reactant and catalyst are in the same phase whereas in heterogeneous catalysis they are in different phase.(iii) In O/W emulsion oil is the dispersed phase while in W/O water is dispersed in oil	1
	The O/W type emulsion can be diluted with water whereas the W/O emulsion can't be diluted with water.	1
1.4	(Any one point)	1
14.	Formula $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$	1
	$\frac{23.75 mm - 23.375 mm}{23.75 mm} = \frac{5.0 g \times 18 g / mol}{M_2 \times 95.0 g}$	
	$M_2 = \frac{5.0 g \times 18.0 g / mol \times 23.75 mm}{95 g \times 0.375 mm}$	1
	$M_2 = 60.0 \text{g/mol}$	1
15.	(i) Distillation	1
	(ii) Collector / enhancing the non-wettability of mineral particles.	1
	(iii) As ΔS is positive /ΔG is more negative	1
16.	(i) Stoichiometric Defect	1
	(ii) Frenkel Defect	1
	(iii) Due to small size of Ag ⁺ ion	1

17.	(i)	$CH_3 - CH(OH) - CN$	1
	(ii)	C_6H_5 – COOH	1
	(iii)	$CH_3 - CH_2NH_2$	1
18.	(i)	Glyptal:	1
		COOH	
		СООН	
		Pthalic Acid	
	(**)	and HO-CH ₂ - CH ₂ -OH (ethylene glycol)	1
	(ii)	Teflon: Monomer: 1,1,2,2-Tetrafluoroethene	1
		$ \begin{array}{cccc} F & F \\ & \\ F & C & = & C & F \end{array} $	
	(iii)	1,1,2,2-Tetrafluoroethene Nylon-6	
		Monomer: Caprolactum	1
		H '	
		$\frac{1}{N}$ 0	
	H_2C		
	H ₂ C	hoCH ₂	
	45	Caprolactum	
19.	(Note	: half mark for structure/s and half mark for name/s) Because of higher oxidation state of Mn in Mn ₂ O _{7.}	1
	(ii)	Due to almost similar atomic size / comparable size.	1
	(iii)	$2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
20.	(ii)	$t_{2g}^{3} e_{g}^{1}$	1 ½
20.		ybridization dsp^2 , Shape \rightarrow Square planar or diagram	1 ½
		2-	
		NC CN	
		Ni /	
		NG TO THE TOTAL PROPERTY OF THE TOTAL PROPER	
	(Mark	ks of (i) part is merged into (ii) and (iii) part)	

F _		
21.	(i) Due to the stability of benzyl carbocation/resonance/Diagram	1
	(ii) Because 2-Bromobutane has a chiral centre.	1
	(iii) Due to – I effect of halogen.	1
22.	(i) $C_6H_5NH_2 \xrightarrow{NaNO_2 + HCl} C_6H_5N_2Cl \xrightarrow{H_2O+H^+} C_6H_5OH$	1
	(ii) $CH_3 - CH = CH_2 \xrightarrow{HBr} CH_3 - CH_2 - CH_2Br \xrightarrow{KOH_{Aq}} CH_3CH_2CH_2OH$	1
	OCH ₃ CH ₃ Cl Anh.AlCl ₃ CH ₃ CH ₃ CH ₃ CH ₃	1
	(Or any correct method) OR	1
22.	(i) $CH_3 - CH_2 - CH_2OH \xrightarrow{Cu/573K} CH_3CHO + H_2$ (ii)	<u> </u>
	он он ОН	1
	CH ₃ COCl +	
	Phenol 2-Hydroxyacetophenone COCH ₃ 4-Hydroxyacetophenone	1
22	(iii) $C_2H_5Cl + NaOCH_3 \rightarrow C_2H_5-O-CH_3 + NaCl$	1/ 1/
23.	(i) Concern for students health, Application of knowledge of chemistry to daily life, empathy, caring or any other (Any two)	1/2, 1/2
	(ii) Through posters, nukkad natak in community, social media, play in assembly or any	
	other (Any two)	1
	(iii) Tranquilizers are drugs used for treatment of stress or mild and severe mental	1/2 , 1/2
	disorders. Eg: equanil (or any other suitable example) (iv) Aspartame is unstable at cooking temperature.	1
24.	(a)	
	Formula: $k = \frac{2.303}{t} \log \frac{\left[CH_3COOCH_3\right]_1}{\left[CH_3COOCH_3\right]_2}$	1/2
	$k_1 = \frac{2.303}{20s} \log \frac{0.4M}{0.2M}$	1
	$k_1 = 0.03 \text{ s}^{-1}$	
	$k_2 = \frac{2.303}{40s} \log \frac{0.4M}{0.1M}$	

		1
	$k_2 = 0.03 \text{ s}^{-1}$	1
	Since constant values of rate constants are obtained by applying 1 st Order integrated rate law, the reaction is pseudo first order reaction.	1/2
	(b) $Av rate = \frac{total \ change \ in \ concentration}{total \ change \ in \ time}$ or	1/2
	$Av rate = -\frac{[CH_{3}COOCH_{3}]final - [CH_{3}COOCH_{3}]initial}{Time(f) - Time(i)}$	
	$Av rate = -\frac{0.10M - 0.20M}{40 Sec - 20 Sec}$	1
	40 Sec - 20 Sec Av rate = 0.0005 M sec ⁻¹ or 5.0 x 10 ⁻³ mol L ⁻¹ sec ⁻¹	1/2
	OR	
24	 a) i) <u>Collision frequency</u>: No of collisions taking place per second per unit volume. ii) <u>Rate Constant</u>: It is the rate of reaction when the concentration of reactants 	1
	is unity i.e. 1 M. It is temperature dependent b) $\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{TT_2} \right]$	1
		1
	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left\lfloor \frac{T_2 - T_1}{T_1 T_2} \right\rfloor$	
	$\log 6 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	1
	$0.7782 = \frac{Ea}{19.147} \left[\frac{50}{105000} \right]$	
	$0.7782 = \frac{Ea}{19.147} [0.00047619]$	
	$\frac{0.7782 \times 19.147}{0.00047619} = Ea = 31290.44 \text{ J/mol}$	1
	Ea = 31.29 kJ/mol	
25.	a) (i) The +3 Oxidation state of Bi is more stable than Sb(III) .	1
	(ii) Because the electronegativity of Cl is greater than that of I.	1
	(iii) Due to decrease in electronegativity and increase in the atomic size.	1

