SET	_	3
	_	J

Series : SSO/C	

कोड नं. Code No.

56/3

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय :3 घंटे |

[अधिकतम अंक :70

Time allowed: 3 hours]

[Maximum Marks : 70

सामान्य निर्देश:

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 6 से 10 तक लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 23 मुल्याधारित प्रश्न है और इसके लिए **4** अंक हैं।
- (vi) प्रश्न-संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vii) यदि आवश्यकता हो, तो **लॉग टेबलों** का प्रयोग करें । कैलकुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- (i) All questions are compulsory.
- (ii) Question number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Question number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Question number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Question number 24 to 26 are long answer questions and carry 5 marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. 'कीलेट' प्रभाव का क्या तात्पर्य होता है ?

What is meant by chelate effect?

2. निम्न का आई यू पी ए सी (IUPAC) नाम लिखिए :

$$CH_3 - CH_2 - CHO$$

Write the IUPAC name of the following:

$$CH_3 - CH_2 - CHO$$

3. निम्न को क्षारीय क्षमता के बढ़ते क्रम में व्यवस्थित कीजिए :

ऐनिलीन, p-नाइट्रोऐनिलीन और p-टालुइड़ीन

Arrange the following in increasing order of basic strength:

Aniline, p-Nitroaniline and p-Toluidine

4. AgCl किस प्रकार का स्टोइकियोमीट्टी दोष दर्शाता है ?

What type of stoichiometric defect is shown by AgCl?

5. इमल्शन क्या होते हैं ? एक उदाहरण दीजिए ।

What are emulsions? Give an example.

6. पोटैशियम परमैंगनेट की निर्माण विधि का वर्णन कीजिए । अम्लीकृत परमैंगनेट ऑक्सैलिक अम्ल के साथ कैसे अभिक्रिया करता है ? अभिक्रिया के लिये आयिनक समीकरण लिखिए ।

अथवा

पोटैशियम डाइक्रोमेट की ऑक्सीकरण क्रिया का वर्णन कीजिए और इसकी (i) आयोडाइड (ii) H_2S के साथ होने वाली अभिक्रियाओं के लिये आयनिक समीकरणों को लिखिए |

Describe the preparation of potassium permanganate. How does the acidified permanganate solution react with oxalic acid? Write the ionic equations for the reactions.

OR

Describe the oxidising action of potassium dichromate and write the ionic equations for its reaction with (i) an iodide (ii) H_2S .

7. एथनॉल से एथीन बनने में अम्ल निर्जलीकरण की क्रियाविधि लिखिए ।

Write the mechanism of acid dehydration of ethanol to yield ethene.

- 8. निम्न पदों की परिभाषाएँ लिखिये :
 - (i) मोलांश (x)
 - (ii) एक विलयन की मोललता (m)

Define the following terms:

- (i) Mole fraction (x)
- (ii) Molality of a solution (m)

9. जीरो ऑर्डर और द्वितीय ऑर्डर अभिक्रियाओं के लिये दर स्थिरांकों के यूनिट लिखिए उस स्थिति में जब सांद्रता को $mol L^{-1}$ और समय को सेकण्डों में लिखा गया हो ।

Write units of rate constants for zero order and for the second order reactions if the concentration is expressed in mol L^{-1} and time in second.

10. निम्न कथनों की व्याख्या कीजिए :

- (i) फॉस्फोरस की अपेक्षा नाइट्रोजन बहुत कम सक्रिय है ।
- (ii) NF_3 एक ऊष्माक्षेपी पदार्थ है परन्तु $\mathrm{NC}l_3$ ऊष्माशोषी पदार्थ है ।

Explain the following:

- (i) Nitrogen is much less reactive than phosphorus.
- (ii) NF₃ is an exothermic compound but NCl_3 is an endothermic compound.
- 11. 'अनानुपातन' से क्या तात्पर्य होता है ? जलीय विलयन में अनानुपातन अभिक्रियाओं का एक उदाहरण दीजिए ।

What is meant by 'disproportionation'? Give one example of disproportionation reaction in aqueous solutions.

12. निम्नलिखित के IUPAC नाम लिखिए :

- (i) $[Co(NH_3)_6]Cl_3$
- (ii) $[NiCl_4]^{2-}$
- (iii) $K_3[Fe(CN)_6]$

Write the IUPAC name of the following:

- (i) $[Co(NH_3)_6]Cl_3$
- (ii) $[NiCl_4]^{2-}$
- (iii) $K_3[Fe(CN)_6]$

13. निम्न यौगिकों के आई यू पी ए सी (IUPAC) नामों को दीजिए :

$$\begin{array}{ccc} \text{(i)} & \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & \text{Br} \end{array}$$

(iii)
$$CH_2 = CH - CH_2 - Cl$$

Give the IUPAC names of the following compounds:

$$\begin{array}{ccc} \text{(i)} & \text{CH}_3 - \text{CH} - \text{CH}_2 - \text{CH}_3 \\ & \text{Br} \end{array}$$

(iii)
$$CH_2 = CH - CH_2 - Cl$$

14. निम्न रूपांतरण कैसे किये जाते हैं ?

- (i) बेन्जिल क्लोराइड का बेन्जिल ऐल्कोहॉल में
- (ii) एथिल मैग्नीशियम क्लोराइड का प्रोपेन-1-ऑल में
- (iii) प्रोपीन को प्रोपेन-2-ऑल में

How are the following conversions carried out?

- (i) Benzyl chloride to Benzyl alcohol
- (ii) Ethyl magnesium chloride to Propan-1-ol
- (iii) Propene to Propan-2-ol

15. निम्न अभिक्रियाओं में मुख्य उत्पाद लिखिए :

(i)
$$CH_3 - CH_2OH \xrightarrow{PCl_5}$$
?

(ii)
$$OH$$
 + CH_3 - Cl anhyd. $AlCl_3$?

(iii)
$$CH_3 - Cl + CH_3CH_2 - ONa \rightarrow ?$$

Write the major product in the following equations:

(i)
$$CH_3 - CH_2OH \xrightarrow{PCl_5}$$
?

(ii)
$$OH$$
 + CH_3 - Cl anhyd. $AlCl_3$?

(iii)
$$CH_3 - Cl + CH_3CH_2 - ONa \rightarrow ?$$

16. प्रोटीन से संबन्धित निम्न को परिभाषित कीजिए :

- (i) पेप्टाइड लिंकेज
- (ii) प्राइमरी संरचना
- (iii) डीनैचुरेशन

Define the following as related to proteins:

- (i) Peptide linkage
- (ii) Primary structure
- (iii) Denaturation
- 17. 'कोपॉलीमराइजेशन' पद की व्याख्या कीजिए और 'कोपॉलीमराइजेशन' के दो उदाहरण दीजिए। Explain the term 'copolymerization' and give two examples of copolymerization.

18. सिल्वर fcc जालक में क्रिस्टिलित होता है । यदि यूनिट सेल के कोर की लम्बाई $4.077 \times 10^{-8}~{\rm cm}$ हो, तो सिल्वर का अर्थव्यास (r) परिकिलत कीजिए ।

Silver crystallises in fcc lattice. If edge length of the unit cell is 4.077×10^{-8} cm, then calculate the radius of silver atom.

19. केन-शुगर (M.W. 342) का 5 प्रतिशत घोल (द्रव्यमान आधार पर) एक पदार्थ X के 0.877% घोल के साथ आइसोटोनिक है । X का आणविक भार परिकलित कीजिए ।

A 5 percent solution (by mass) of cane-sugar (M.W. 342) is isotonic with 0.877% solution of substance X. Find the molecular weight of X.

20. एक प्रथम कोटि अभिक्रिया के लिये दर स्थिरांक 60 s^{-1} है । अभिकारक के प्रारम्भिक सांद्रण को इसके 1/10 तक घटने में कितना समय लगेगा ?

The rate constant for a first order reaction is 60 s^{-1} . How much time will it take to reduce the initial concentration of the reactant to its $1/10^{th}$ value?

- 21. निम्न प्रक्रमों की व्याख्या कीजिए:
 - (i) डायलिसिस
 - (ii) इलेक्ट्रोफोरेसिस
 - (iii) टिण्डल प्रभाव

Describe the following processes:

- (i) Dialysis
- (ii) Electrophoresis
- (iii) Tyndall effect

22. निम्न के उत्तर दीजिए:

- (i) ऐलुमिनियम के धातुकर्म में क्राइयोलाइट की क्या भूमिका होती है ?
- (ii) भर्जन क्रिया और निस्तापन में अंतर कीजिए ।
- (iii) 'क्रोमैटोग्रैफी' पद से क्या तात्पर्य होता है ?

अथवा

लोहा बनाने के लिए ब्लास्ट फर्नेस के विभिन्न भागों में होने वाली अभिक्रियाएँ लिखिए ।

Answer the following:

- (i) What is the role of cryolite in the metallurgy of aluminium?
- (ii) Differentiate between roasting and calcination.
- (iii) What is meant by the term 'chromatography'?

OR

Write the reactions taking place in different zones of the blast furnace to obtain Iron.

- 23. नीरज डिपार्टमेन्टल स्टोर में घर के सामान खरीदने के लिये गया । एक खाने में वह कुछ शुगररिहत टिकियाँ देखा । वह कुछ ऐसी टिकिया खरीदने का निश्चय किया जो उसके दादा के लिये उपयोगी थी, क्योंकि उसके दादा शुगर के मरीज थे । वहाँ तीन प्रकार की शुगररिहत टिकियाँ थीं । उसने निर्णय किया वह सुक्रोलोस खरीदे जो उसके दादा के लिये उपयोगी थी ।
 - (i) एक अन्य शुगर रहित का नाम दीजिए जो नीरज ने नहीं खरीदा ।
 - (ii) क्या डाक्टर के पर्ची के बिना ऐसी दवा खरीदना नीरज के लिये उचित था ?
 - (iii) उपरोक्त से नीरज का कौन सा गुण प्रतिलक्षित होता है ?

Neeraj went to the departmental store to purchase groceries. On one of the shelves he noticed sugar free tablets. He decided to buy them for his grandfather who was a diabetic. There were three types of sugar free tablets. He decided to buy sucrolose which was good for his grandfather's health.

- (i) Name another sugar free tablet which Neeraj did not purchase.
- (ii) Was it right to purchase such medicines without doctor's prescription?
- (iii) What quality of Neeraj is reflected above?

56/3

- 24. (a) निम्नों की संरचनाएँ आरेखित कीजिए:
 - (i) p-मेथिलबैंज़एल्डिहाइड
 - (ii) 4-मेथिलपैन्ट-3-ईन-2-ऑन
 - (b) निम्न यौगिक युग्मों में अंतर करने के लिये रासायनिक जाँचों को दीजिए :
 - (i) बेन्ज़ोइक ऐसिड और एथिलबेन्ज़ोएट ।
 - (ii) बेन्जैल्डिहाइड और ऐसीटोफीनोन
 - (iii) फीनॉल और बेन्ज़ोइक ऐसिड

अथवा

- (a) निम्न व्युत्पन्नों की संरचनाएँ आरेखित कीजिए :
 - (i) प्रोपेनोन ऑक्सिम
 - (ii) CH3CHO का सेमीकार्बेजोन
- (b) एथैनॉल को आप निम्न यौगिकों में कैसे रूपांतरित करेंगे ? समबद्ध रासायनिक समीकरणों को दीजिए ।
 - (i) $CH_3 CH_3$
 - (ii) $CH_3 CH CH_2 CHO$ OH
 - (iii) CH₃CH₂OH
- (a) Draw the structures of the following:
 - (i) p-Methylbenzaldehyde
 - (ii) 4-Methylpent-3-en-2-one
- (b) Give chemical tests to distinguish between the following pairs of compounds:
 - (i) Benzoic acid and Ethyl benzoate.
 - (ii) Benzaldehyde and Acetophenone.
 - (iii) Phenol and Benzoic acid.

OR

(a)	Drav	v the structures of the following derivatives:
	(i)	Propanone oxime
	(ii)	Semicarbazone of CH ₃ CHO
(b)		will you convert ethanal into the following compounds? Give the chemical tions involved.
	(i)	$CH_3 - CH_3$
	(ii)	$CH_3 - CH - CH_2 - CHO$ OH
	(iii)	CH ₃ CH ₂ OH
(a)	•	6 के तत्त्व साधारणतया प्रथम आयनन एन्थेल्पी तत्सम्बन्धी आवर्त वाले ग्रुप 15 के तत्त्वों की में कम मान दर्शाते हैं । ऐसा क्यों है ?
(b)	क्या ह	ोता है जब –
	(i)	सांद्र $H_2 SO_4$ को CaF_2 पर डाला जाता है ?
	(ii)	सल्फ़र डाइऑक्साइड चारकोल की उपस्थिति में क्लोरीन से अभिक्रिया करती है ?
	(iii)	अमोनियम क्लोराइड को $\operatorname{Ca(OH)}_2$ के साथ उपचारित किया जाता है ?
		अथवा
(a)	निम्नों	की संरचनाएँ आरेखित कीजिए :
	(i)	BrF ₃
	(ii)	${ m XeO_3}$
(b)	निम्न	प्रश्नों के उत्तर दीजिए :
	(i)	PH3की अपेक्षा NH3 क्यों अधिक क्षारीय होता है ?
	(ii)	हैलोजन प्रबल ऑक्सीकारक क्यों होते हैं ?
	(iii)	XeOF_4 की संरचना आरेखित कीजिए ।
		10

25.

56/3

- (a) Elements of Gr. 16 generally show lower value of first ionization enthalpy compared to the corresponding periods of Gr. 15. Why?
- (b) What happens when
 - (i) concentrated H₂SO₄ is added to CaF₂?
 - (ii) sulphur dioxide reacts with chlorine in the presence of charcoal?
 - (iii) ammonium chloride is treated with Ca(OH)₂?

OR

- (a) Draw the structure of the following:
 - (i) BrF₃
 - (ii) XeO₃
- (b) Answer the following:
 - (i) Why is NH₃ more basic than PH₃?
 - (ii) Why are halogens strong oxidising agents?
 - (iii) Draw the structure of XeOF₄.
- 26. $\Delta_r G^\circ$ और e.m.f.(E) को परिकलित कीजिए जो 25 °C पर स्टैंडर्ड स्थिति में निम्न सेल से प्राप्त होता है :

$$Zn(s) \mid Zn^{2+}(aq) \parallel Sn^{2+}(aq) \mid Sn(s)$$

दिया गया :
$$E^{\circ}_{Zn^{2+}/Zn} = -0.76 \text{ V}; E^{\circ}_{Sn^{2+}/Sn} = -0.14 \text{ V}$$

और $F = 96500 \text{ C mol}^{-1}$

अथवा

(a) एक विद्युत्-अपघट्य के विलयन के लिये चालकता और मोलर चालकता को परिभाषित कीजिए । सांद्रता के साथ उनके परिवर्तन की व्याख्या कीजिए । (b) उस गैलवॉनिक सेल के स्टैंडर्ड सेल विभव को परिकलित कीजिए जिसमें निम्न अभिक्रिया होती है:

$$Fe^{2+}(aq) + Ag^{+}(aq) \rightarrow Fe^{3+}(aq) + Ag(s)$$

अभिक्रिया का $\Delta_{\mathbf{r}}G^{\circ}$ और तुल्यांकी स्थिरांक का परिकलन भी कीजिए ।

$$(E^{\circ}_{Ag^{+}/Ag} = 0.80 \text{ V}; E^{\circ}_{Fe^{3+}/Fe^{2+}} = 0.77 \text{ V})$$

Calculate $\Delta_r G^\circ$ and e.m.f. (E) that can be obtained from the following cell under the standard conditions at 25 °C :

$$Zn(s) \mid Zn^{2+}(aq) \mid Sn^{2+}(aq) \mid Sn(s)$$

Given:
$$E^{\circ}_{Zn^{2+}/Zn} = -0.76 \text{ V}; E^{\circ}_{Sn^{2+}/Sn} = -0.14 \text{ V}$$

and $F = 96500 \text{ C mol}^{-1}$.

OR

- (a) Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with concentration.
- (b) Calculate the standard cell potential of the galvanic cell in which the following reaction takes place :

$$\mathrm{Fe}^{2+}(\mathrm{aq}) + \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{Ag}(\mathrm{s})$$

Calculate the $\Delta_{r}G^{\circ}$ and equilibrium constant of the reaction also.

$$(E^{\circ}_{Ag^{+}/Ag} = 0.80 \text{ V}; E^{\circ}_{Fe^{3+}/Fe^{2+}} = 0.77 \text{ V})$$

CHEMISTRY MARKING SCHEME SET -56/3 Compt. July, 2015

Qu es.	Value points	Marks
1	Formation of stable complex by polydentate ligand.	1
2	Propanal	1
3	p-Nitroaniline < Aniline < p-Toluidine	1
4	Frenkel defect	1
5	Emulsions are liquid – liquid colloidal systems. For example – milk, cream (or any other one correct example)	1/2 + 1/2
6	Potassium permanganate is prepared by fusion of MnO_2 with an alkali metal hydroxide and an oxidising agent like KNO_3 . This produces the dark green K_2MnO_4 which disproportionates in a neutral or acidic solution to give permanganate. $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$ $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$	1
	Oxalate ion or oxalic acid is oxidised at 333 K: $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ OR	1
6	lodine is liberated from potassium todide : $10I^- + 2MnO_4^- + 16H^+> 2Mn^{2^+} + 8H_2O + 5I_2$ ii) Hydrogen sulphide is oxidised, sulphur being precipitated: $H_2S> 2H^+ + S^{2^-}$	1
7	$5S^{2-} + 2MnO_{4}^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5S$ $\stackrel{H}{H} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow}$	1/2
	$H \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{Slow} H \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{H} + H$ $H \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{H} + H$ $H \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} H$	1/2
	H H Ethene	

8	i)		1
	N	Mole fraction of a component =	
		Number of moles of the component	
	_	Total number of moles of all the components	
		Iolality (<i>m</i>) is defined as the number of moles of the solute per kilogram (kg) of the olvent. Or	
		Moles of solute	1
	N	$ \frac{\text{Moles of solute}}{\text{Mass of solvent in kg}} $	
9	Zero order Second ord	$r: mol L^{-1}s^{-1}$ $der: L mol^{-1}s^{-1}$	1 1
10	i)	Due to high bond dissociation enthalpy of $N \equiv N$	1
	ii)	Due to low bond dissociation enthalpy of F_2 than Cl_2 and strong bond formation between N and F	1
11	Dispropo	rtionation : The reaction in which an element undergoes self-oxidation and self-	1 ½
	reduction	simultaneously. For example –	1 ½
	2Cu ⁺ (aq	$\longrightarrow Cu^{2+}(aq) + Cu(s)$	
	(Or any o	other correct equation)	
12	i)	Hexaamminecobalt(III) chloride	1
	ii)	Tetrachlorido nickelate(II)	1 1
	iii)	Potassium hexacyanoferrate(III)	1
13	i)	2-bromobutane	1
	ii)	1, 3-dibromobenzene	1
	iii)	3-choloropropene	1
14		CH ₂ CI CH ₂ ON ₈ CH ₂ OH	1
	i)	+ NaOH _HCI HT	
	ii)	CH₃CH₂MgCl HCHO CH₃-CH₂-CH₂-OH	1
	11)	$CH_3CH = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH - CH_3$	
		OH	1
15	i)	CH₃-CH₂OH → CH₃CH₂Cl	1

	ii)	1
	ОН ОН ОН	
	+ CH ₃ Cl Anhyd. AlCl ₃ CH ₃ +	
	iii) CH ₃	1
	CH₃Cl + CH₃CH₂-ONa → CH₃CH₂-O-CH₃	
16	i) Peptide linkage – in proteins, ∝-amino acids are connected to each other by peptide	1
	bond or peptide linkage (-CONH- bond). ii) Primary structure - each polypeptide in a protein molecule having amino acids which	1
	are linked with each other in a specific sequence. iii) Denaturation - When a protein is subjected to physical change like change in temperature or chemical change like change in pH, protein loses its biological activity.	1
17	Copolymerisation is a polymerisation reaction in which a mixture of more than one monomeric	1
	species is allowed to polymerise and form a copolymer. $CH = CH_{2}$ $CH_{2} = CH - CH = CH_{2} + CH_{2} - CH - CH_{2} - CH - CH_{2}$ $1, 3-Butadiene$ Butadiene - styrene copolymer	1
	$ \begin{array}{c c} CN & CN \\ n CH_2=CH-CH=CH_2+nCH_2=CH & \xrightarrow{Copolymerisation} & CH_2-CH=CH-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH$	1
18	$r = \frac{\sqrt{2}a}{4}$	1
	$r = \frac{1.414 \times 4.077 \times 10^{-8} cm}{4}$	
	$r = 1.44 \times 10^{-8} \text{ cm}$	1 1
19	$ \pi_{\text{cane sugar}} = \pi_{\text{X}} $	
	Therefore, $c_{\text{cane sugar}} = c_X$ (where c is molar concentration)	
	$\frac{W_{cane\ sugar}}{M_{cane\ sugar}} = \frac{W_X}{M_X}$	1
	$\frac{5 g}{342 g mol^{-1}} = \frac{0.877}{M_X}$	1
	$M_{\rm X} = \frac{0.877 \times 342}{5} \rm gmol^{-1}$	
	$M_{X=}$ 59.9 or 60 gmol ⁻¹	1
20	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1

	co -1 2.30	03, [R] ₀		
	$60 \text{ s}^{-1} = \frac{2.30}{t}$	$-\log\frac{\frac{2}{[R]_0}}{\frac{[R]_0}{4}}$		
	2.303 .	10		
	$t = \frac{2.303}{60 s^{-1}} \text{lo}$	g 10		1
	$t = \frac{2.303}{60}$ s			
	$1 - {60}$ s			
	t = 0.0384 s	8		1
21	i)	It is a process of removing the dissolved s	ubstance from a colloidal solution by means	1
	.,	of diffusion through a semi - permeable m	•	1
	ii)	The movement of colloidal particles unde		1
		oppositely charged electrode is called ele	<u>=</u>	
	iii)	Colloidal particles scatter light in all direct	· · · · · · · · · · · · · · · · · · ·	
22	•,	illuminates the path of beam in the colloid		1
22	i) ii)	It lowers the melting point of alumina / ac	ts as a solvent.	1
	11)	Roasting	Calcination	1
		Ore is heated in a regular supply of air	Heating in a limited supply or	_
			absence of air.	
		(Or with equation)		
	iii)	It is a process of separation of different con	mponents of a mixture which are differently	
		adsorbed on a suitable adsorbent.	OR	1
22	3Fe O. +	CO→2Fe ₃ O ₄ +CO ₂		6 x ½
	(Iron ore)			= 3
				= 3
	Fe ₃ O ₄ + C	O →3FeO +CO₂ CaO +CO₂		= 3
	Fe ₃ O ₄ + C	O→3FeO +CO₂ CaO +CO₂		= 3
	Fe ₃ O ₄ + C CaCO ₃ → (Limeston	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O \rightarrow CaSiO_2$		= 3
	Fe ₃ O ₄ + C CaCO ₃ → (Limestor CaO + Si	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag)		= 3
	$Fe_3O_4 + C$ $CaCO_3 \rightarrow$ (Limestor $CaO + Si$ $FeO + CO$	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O_3 \rightarrow Fe + CO_2$		= 3
	Fe ₃ O ₄ + C CaCO ₃ → (Limestor CaO + Si	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O_3 \rightarrow Fe + CO_2$		= 3
	$Fe_3O_4 + C$ $CaCO_3 \rightarrow$ $(Limeston)$ $CaO + Si$ $FeO + CO$ $C + CO_2 -$ $Coke$ $C + O_2 \rightarrow$	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O \rightarrow Fe + CO_2$ $\rightarrow 2CO$		= 3
	$Fe_3O_4 + C$ $CaCO_3 \rightarrow$ $(Limeston)$ $CaO + Si$ $FeO + CO$ $C + CO_2 -$ $Coke$ $C + O_2 \rightarrow$	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O \rightarrow Fe + CO_2$ $\rightarrow 2CO$ CO_2	correct equations)	= 3
23	$Fe_3O_4 + C$ $CaCO_3 \rightarrow$ $(Limeston)$ $CaO + Si$ $FeO + CO$ $C + CO_2 -$ $Coke$ $C + O_2 \rightarrow$	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O \rightarrow Fe + CO_2$ $\rightarrow 2CO$ CO_2	correct equations)	1
23	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limeston CaO + Si FeO + CO C + CO ₂ - Coke C + Q ₂ \rightarrow FeO + (i) ii)	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O \rightarrow Fe + CO_2$ $\rightarrow 2CO$ CO_2 $C \rightarrow Fe + CO$ (any 6 of the contract of		1 1
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O \rightarrow Fe + CO_2$ $\rightarrow 2CO$ CO_2 $C \rightarrow Fe + CO$ Aspartame, Saccharin (any one)		1
23	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limeston CaO + Si FeO + CO C + CO ₂ - Coke C + Q ₂ \rightarrow FeO + (i) ii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO Aspartame, Saccharin (any one) No Social concern, empathy, concern, social and social concern, social concern, social concern, social concern,		1 1
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	$O \rightarrow 3FeO + CO_2$ $CaO + CO_2$ ne) $O_2 \rightarrow CaSiO_3$ (Slag) $O \rightarrow Fe + CO_2$ $\rightarrow 2CO$ CO_2 $C \rightarrow Fe + CO$ (any 6 of the contract of		1 1
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO Aspartame, Saccharin (any one) No Social concern, empathy, concern, social and social concern, social concern, social concern, social concern,		1 1
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO Aspartame, Saccharin (any one) No Social concern, empathy, concern, social and social concern, social concern, social concern, social concern,		1 1
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO Aspartame, Saccharin (any one) No Social concern, empathy, concern, social and social concern, social concern, social concern, social concern,		1 1
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO (any 6 of Social concern, empathy, concern, social at CHO		1 1 2
	Fe ₃ O ₄ + C CaCO ₃ → (Limestor CaO + Si FeO + CO ₂ -Coke C + O ₂ → FeO + (ii) iii) iii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO Aspartame, Saccharin (any one) No Social concern, empathy, concern, social and social concern, social concern, social concern, social concern,		1 1 2
	Fe ₃ O ₄ + C CaCO ₃ \rightarrow (Limestor CaO + Si FeO + CO C + CO ₂ - Coke C + O ₂ \rightarrow FeO + (i) ii) iii)	O→3FeO +CO₂ CaO +CO₂ ne) O₂→CaSiO₃ (Slag) O→Fe + CO₂ →2CO CO₂ C→Fe + CO (any 6 coordinates) No Social concern, empathy, concern, social and coordinates coordina		1 1 2
	Fe ₃ O ₄ + C CaCO ₃ → (Limestor CaO + Si FeO + CO ₂ -Coke C + O ₂ → FeO + (ii) iii) iii)	O→3FeO +CO ₂ CaO +CO ₂ ne) O ₂ → CaSiO ₃ (Slag) O → Fe + CO ₂ → 2CO CO ₂ C → Fe + CO (any 6 of Social concern, empathy, concern, social at CHO		1 1 2

		1
	will not.	1
	ii)Add NaOH and I ₂ , acetophonone forms yellow ppt of iodoform on heating whereas	_
	benzaldehyde will not.	1
	iii)Add neutral FeCl ₃ , phenol gives violet colouration whereas benzoic acid does not.	
	(or any other correct test)	1
2.4	OR	
24	a) i)	
	CH₃、	1
	C=N-OH	
	CH₃	
	ii)	
	CH₃ 🖁	
	\ II	
	$C=N-NH-C-NH_2$	1
	H'	
	b) i)	
	Zn-Hg	1
	CH₃CHO ———→ CH₃-CH₃	_
	conc HCl	
	ii)	
	2 CH ₃ -CHO $\stackrel{\text{dil. NaOH}}{\longleftrightarrow}$ CH ₃ -CH-CH ₂ -CHO OH	
	$2 \text{ CH} \xrightarrow{\text{CHO}} \xrightarrow{\text{CH}} \text{CH} \xrightarrow{\text{CH}} \text{CH} \xrightarrow{\text{CHO}}$	
		1
	OH	1
	····	
	iii)	
	LiAlH ₄	1
	CH₃CHO —————> CH₃CH₂OH	1
	· Criscii2011	
25	a) Due to relatively stable half – filled p-orbitals of group 15 elements	2
	b) i) CaF ₂ + H2SO ₄ →CaSO ₄ + 2HF	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	SO (a) . Ol (a) . SO Cl (b)	1
	$_{\rm ii)}$ $SO_2(g) + OI_2(g) \rightarrow SO_2OI_2(l)$	1
	$_{\text{iii}}$ SO ₂ (g) + Cl ₂ (g) \rightarrow SO ₂ Cl ₂ (l) $_{\text{iii}}$ 2NH ₄ Cl + Ca(OH) ₂ \rightarrow 2NH ₃ + 2H ₂ O + CaCl ₂	1
	OR	
25		
	F	
	Γ	
	Br F	
		1
		1
	a) i)	

	105	
	b) Due to small size of nitrogen, the long pair of electron on nitrogen is localized/easily.	1
	b) i)Due to small size of nitrogen, the lone pair of electron on nitrogen is localized/easily available for donation.	
	ii)Because they need only one electron to attain stable/noble gas configuration.	1
	F Xe F	
	iii)	1
26	E^{0} cell = $E^{0}_{Sn2+/Sn}$ - $E^{0}_{Zn2+/Zn}$ = -0.14V -(-0.76V)	1
	= 0.62V	1
	$\Delta_{\rm r}G^0 = -n F E^0_{\rm cell}$	1
	$= -2 \times 96500 \text{ C mol}^{-1} \times 0.62 \text{ V}$ = -119660 J mol ⁻¹	1
	– - 119000 J IIIOI	1
	$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
	$E_{\text{cell}} = 0.62 - \frac{0.059}{2} \log \frac{[Zn^{2+}]}{[Sn^{2+}]}$	
	OR	1
26	a) The conductivity of a solution at any given concentration is the conductance of one unit volume of solution kept between two platinum electrodes with unit area of cross section and at a distance of unit length.	1/2
	Molar conductivity of a solution at a given concentration is the conductance of the volume <i>V</i> of solution containing one mole of electrolyte kept between two electrodes with area of	1/2
	cross section <i>A</i> and distance of unit length. Molar conductivity increases with decrease in concentration.	1
	$b)E^{0}cell = E^{0}_{C} - E^{0}_{A}$	
	= 0.80V - 0.77V	1/2
	=0.03V	1/2
	$\Delta_{\rm r}G^0 = -n \ {\rm F} \ {\rm E}^0_{\rm cell}$ = -1 x 96500 C mol ⁻¹ x 0.03 V	1
	$= -2895 \text{ J mol}^{-1}$	1/2
	$\text{Log K}_{c} = \frac{n E_{cell}^{o}}{0.059}$	72

$L_{\text{og}} K = \frac{1 \times 0.03}{1}$	1/2
$\log K_{\rm c} = \frac{1}{0.059}$	
$Log K_c = 0.508$	

Dr. Sangeeta Bhatia

Sh. S.K. Munjal

Sh. D.A. Mishra

Ms. Garima Bhutani