Series: OSR/1

कोड नं. Code No. 56/1/3

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- क्रपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 11 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 30 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will only read the question paper and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे]

Time allowed: 3 hours]

[अधिकतम अंक : 70

[Maximum Marks: 70

सामान्य निर्देश :

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 9 से 18 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 19 से 27 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 28 से 30 दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं ।
- (vi) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित नहीं है ।

[P.T.O.

General Instructions:

- (i) All questions are compulsory.
- (ii) Question numbers 1 to 8 are very short-answer questions and carry 1 mark each.
- (iii) Question numbers 9 to 18 are short-answer questions and carry 2 marks each.
- (iv) Question numbers 19 to 27 are also short-answer questions and carry 3 marks each.

1

- (v) Question numbers 28 to 30 are long-answer questions and carry 5 marks each.
- (vi) Use Log Tables, if necessary. Use of calculators is not allowed.
- 1. द्रव विरोधी सॉल और द्रव स्नेही सॉल का एक-एक उदाहरण लिखें । 1
 Give one example each of lyophobic sol and lyophilic sol.

का IUPAC नाम लिखें।

Write the IUPAC name of the compound.

$$\begin{array}{c|c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{C} - \operatorname{CH}_3 \\ | & \parallel \\ \operatorname{OH} & \operatorname{O} \end{array}$$

- 3. मेथेनॉल और ऐसीटोन युग्म में कौन सा अन्तर-अणुक आकर्षक प्रभाव क्रियाकारी होता है ?

 What type of intermolecular attractive interaction exists in the pair of methanol and acetone ?

[Co(NH₃)₆]³⁺ and [Co(en)₃]³⁺

- 5. इन यौगिकों को क्षारिक बल के बढ़ते क्रम में पुन: व्यवस्थित कीजिये : $C_6H_5NH_2, C_6H_5NHCH_3, C_6H_5N(CH_3)_2$
- स्क्रोज के जलीय विघटन के क्रियाफलों के नाम लिखें ।
 Name the products of hydrolysis of sucrose.
 56/1/3

7. इन आइसोमरों (सम-अवयिवयों) में से कौन सा अधिक वाष्पशील है ? o-नाइट्रोफ़िनॉल और p-नाइट्रोफ़िनॉल Which of the following isomers is more volatile : o-nitrophenol or p-nitrophenol ?

similarity between Raoult's law and Henry's law?

- 8. निक्षलित न्यून ग्रेड के कॉपर के अयस्क से कॉपर की प्राप्ति के लिये कौन से अपचायक का उपयोग किया जाता है ? 1
 Which reducing agent is employed to get copper from the leached low grade copper ore ?
- 9. वाष्पशील अवयवों वाले विलयन के लिये राउल्ट का नियम लिखें। राउल्ट के नियम और हेनरी के नियम में क्या समरूपता है?

 State Raoult's law for the solution containing volatile components. What is the
- 10. निम्न पदों की व्याख्या कीजिये:

2

1

- (i) वेग स्थिरांक (k)
- (ii) किसी अभिक्रिया का अर्धकाल (t_{1/2})

Explain the following terms:

- (i) Rate constant (k)
- (ii) Half life period of a reaction $(t_{1/2})$
- 11. निम्न विधियों के आधारभूल नियम लिखें :

2

2

- (i) फेन उत्प्लावन विधि
- (ii) वैद्युत अपघटनी प्रतिशोधन

Write the principles of the following methods:

- (i) Froth floatation method
- (ii) Electrolytic refining
- 12. $11.2~{
 m g~cm^{-3}}$ घनत्व और $4 \times 10^{-8}~{
 m cm}$ िकनारे की लंबाई का एक तत्त्व f.c.c. जालक बनाता है । इस तत्त्व का परमाणुक द्रव्यमान परिकलित कीजिये ।

$$(N_A = 6.022 \times 10^{23} \text{ H/m}^{-1})$$

An element with density $11.2~{\rm g~cm^{-3}}$ forms a f.c.c. lattice with edge length of $4\times10^{-8}~{\rm cm}$. Calculate the atomic mass of the element.

(Given:
$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$
)

13.	यहाँ दिखाई ग	ाई व्यवस्था	(त्रुटिपूर्ण क्रिस्टल)	का निरीक्षण कर	आगे पुछे	गये प्रश्नों	के उत्तर लिखें
-----	--------------	-------------	------------------------	----------------	----------	--------------	----------------

2

2

2

 A^{+} B^{-} A^{+} B^{-} A^{+}

 B^{-} 0 B^{-} A^{+} B^{-}

 A^{+} B^{-} A^{+} 0 A^{+}

B- A+ B- A+ B-

- (i) इस क्रिस्टल द्वारा कौन सा मान आत्मक (तत्त्वयोगमितीय) दोष दिखाया जाता है ?
- (ii) इस दोष के कारण क्रिस्टल के घनत्व पर किस प्रकार प्रभाव पड़ता है ?
- (iii) किस प्रकार के आयनिक पदार्थ ऐसा दोष दिखाते हैं ?

Examine the given defective crystal

 A^{+} B^{-} A^{+} B^{-} A^{+}

B- 0 B- A+ B-

 A^{+} B^{-} A^{+} 0 A^{+}

B- A+ B- A+ B-

Answer the following questions:

- (i) What type of stoichiometric defect is shown by the crystal?
- (ii) How is the density of the crystal affected by this defect?
- (iii) What type of ionic substances show such defect?

14. परिकलित कीजिये कि आणव द्रव्यमान = 256 g मोल $^{-1}$ के यौगिक की कितनी मात्रा को 75 g बैन्ज़ीन में घोला जाये कि इसके हिमांक में 0.48 K की कमी हो जाये $+ (\text{K}_{\text{f}} = 5.12 \text{ K} \text{ kg} \text{ मोल}^{-1})$.

Calculate the mass of compound (molar mass = 256 g mol⁻¹) to be dissolved in 75 g of benzene to lower its freezing point by 0.48 K ($K_f = 5.12 \text{ K kg mol}^{-1}$).

15. (i) निम्न युग्म से कौन सा ऐल्किल हेलाइड किरैल है और अधिक तीव्र $S_{N}2$ अभिक्रिया देता है ?

- (ii) निम्न स्थितियों में $S_N 1$ और $S_N 2$ में से कौन सी अभिक्रिया होगी ?
 - (a) विन्यास का उलटना (inversion)
 - (b) रेसिमीकरण (Racemisation)
- (i) Which alkyl halide from the following pair is chiral and undergoes faster S_N^2 reaction?

- (ii) Out of S_N1 and S_N2, which reaction occurs with
 - (a) Inversion of configuration
 - (b) Racemisation

16. f	नेम्न में	से	प्रत्येक	अभिक्रिया	में	प्रमुख	मोनोहेलो	उत्पाद	की	संरचना	दिखाइये	
-------	-----------	----	----------	-----------	-----	--------	----------	--------	----	--------	---------	--

(i)
$$\sim$$
 OH \sim OH \sim OH

(ii)
$$CH_2 - CH = CH_2 + HBr$$
 $\frac{\text{utianiss}}{\text{utianiss}}$

Draw the structure of major monohalo product in each of the following reactions:

(i)
$$\bigcirc$$
 OH $\stackrel{SOCl_2}{\longrightarrow}$

(ii)
$$CH_2 - CH = CH_2 + HBr$$
 Peroxide

17. इन रासायनिक समीकरणों को पूरा करें :

- (i) $Ca_3P_2 + H_2O \rightarrow$
- (ii) $Cu + H_2SO_4(\overline{xig}) \rightarrow$

अथवा

निम्न यौगिक समूहों को उनके साथ लिखे गुण अनुसार व्यवस्थित कीजिये :

- (i) HF, HCl, HBr और HI बढ़ती हुई आबन्ध वियोजन ऐन्थैल्पी अनुसार
- (ii) H_2O, H_2S, H_2Se और H_2Te- बढ़ती हुई आम्ल विशेषता अनुसार

Complete the following chemical equations:

- (i) $Ca_3P_2 + H_2O \rightarrow$
- (ii) $Cu + H_2SO_4(conc.) \rightarrow$

OR

Arrange the following in the order of property indicated against each set:

- (i) HF, HCl, HBr, HI increasing bond dissociation enthalpy.
- (ii) H₂O, H₂S, H₂Se, H₂Te increasing acidic character.

18. संकर
$$[Cr(NH_3)_4Cl_2]^+$$
 का IUPAC नाम लिखें । यह किस प्रकार की समावयवता (isomerism) दिखाता है ?

Write the IUPAC name of the complex $[Cr(NH_3)_4Cl_2]^+$. What type of isomerism does it exhibit?

$$CH_3CH_2OH \xrightarrow{HBr} CH_3CH_2Br + H_2O$$

- (b) रीमर-टीमन अभिक्रिया के लिये समीकरण लिखें।
- (a) Write the mechanism of the following reaction:

$$CH_3CH_2OH \xrightarrow{HBr} CH_3CH_2Br + H_2O$$

(b) Write the equation involved in Reimer-Tiemann reaction.

P.T.O.

2

3

2

2

20. ((a)	निम्न	यौगिकों	की	संरचनाएँ	रेखित	कीजिये	
 (· • ·		111 6 401	-1-1	1117111	110411	7711 - 1 7	

- (i) XeF₄
- (ii) N_2O_5
- (b) श्वेत फ़ास्फ़ोरस और लाल फ़ास्फ़ोरस का संरचना अन्तर लिखें।
- (a) Draw the structures of the following compounds:
 - (i) XeF_4
 - (ii) N_2O_5
- (b) Write the structural difference between white phosphorus and red phosphorus.

3

3

21. निम्न अभिक्रियाओं के A, B और C की संरचनाएँ बताइये :

(i) $CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$

(ii)
$$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{Br_2+KOH} B \xrightarrow{CHCl_3+NaOH} C$$

अथवा

निम्न परिवर्तन कैसे किये जाएँगे ?

- (i) नाइट्रोबैन्ज़ीन का ऐनिलीन में,
- (ii) एथेनोइक अम्ल का मैथेनएमीन में,
- (iii) ऐनिलीन का N-फ़िनाइलईथेनएमाइड में । (सम्बद्ध रासायनिक समीकरण लिखें ।)

Give the structures of A, B and C in the following reactions:

(i)
$$CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAIH_4} B \xrightarrow{HNO_2} C$$

(ii)
$$CH_3COOH \xrightarrow{NH_3} A \xrightarrow{Br_2+KOH} B \xrightarrow{CHCl_3+NaOH} C$$

OR

How will you convert the following:

- (i) Nitrobenzene into aniline
- (ii) Ethanoic acid into methanamine
- (iii) Aniline into N-phenylethanamide

 (Write the chemical equations involved.)

56/1/3

22.	निम्न	के लिये कारण लिखें :	3
	(i)	वाष्प अवस्था में गन्धक अनुचुम्बकीय व्यवहार दिखाता है ।	
	(ii)	$\mathrm{SnC}l_2$ से $\mathrm{SnC}l_4$ अधिक सहसंयोजक (covalent) होता है ।	
	(iii)	$ m H_{3}PO_{3}$ की अपेक्षा $ m H_{3}PO_{2}$ अधिक प्रबल अपचायक है ।	
	Acco	ount for the following:	
	(i)	Sulphur in vapour form exhibits paramagnetic behaviour.	
	(ii)	$SnCl_4$ is more covalent than $SnCl_2$.	
	(iii)	H ₃ PO ₂ is a stronger reducing agent than H ₃ PO ₃ .	
23.	(i)	रोगाणुनाशक क्या होते हैं ? इनका एक उदाहरण लिखें ।	
	(ii)	औषधी लक्ष्य के रूप में चुने गये वृहदाणुओं के दो उदाहरण दीजिये ।	
	(iii)	एनायनी अपमार्जक क्या होते हैं ? इनका एक उदाहरण दीजिये ।	3
	(i)	What are disinfectants? Give an example.	
	(ii)	Give two examples of macromolecules that are chosen as drug targets.	
	(iii)	What are anionic detergents? Give an example.	
24.	(i)	किस विटामिन की कमी से स्कर्वी हो जाती है ?	
	(ii)	किस प्रकार के अनुबन्धन से प्रोटीनें बनती हैं ?	
	(iii)	ग्लूकोज़ की HI से प्रक्रिया करने पर क्या क्रियाफल प्राप्त होता है ?	3
	(i)	Deficiency of which vitamin causes scurvy?	
	(ii)	What type of linkage is responsible for the formation of proteins?	
	(iii)	Write the product formed when glucose is treated with HI.	
25.	(a)	फ्रीअंडलिश अधिशोषण समतापी के लिये ठोस पदार्थों पर गैसों के अधिशोषण के लिये समीकरण लिखें ।	
	(b)	लियोफ़िलिक सॉल की एक विशेषता लिखें ।	
	(c)	प्रकीर्णित प्रावस्था के कणों के आधार पर संयोजित (associated) कोलायड और बहुआणव कोलायड	
		का एक-एक उदाहरण दीजिये ।	3
	(a)	In reference to Freundlich adsorption isotherm write the expression for adsorption of gases on solids in the form of an equation.	
	(b)	Write an important characteristic of lyophilic sols.	
	(c)	Based on type of particles of dispersed phase, give one example each of associated colloid and multimolecular colloid.	
56/1	/3	7 [P.T	.O.

3

$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

में निम्न आँकड़े प्राप्त हुए :

प्रयोग	समय/s ⁻¹	सकल दाब/वायुमण्डल
1	0	0.4
2	100	0.7

वेग स्थिरांक परिकलित कीजिये ।

$$(\log 4 = 0.6021, \log 2 = 0.3010)$$

The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume :

$$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.4
2	100	0.7

Calculate the rate constant.

(Given: $\log 4 = 0.6021$, $\log 2 = 0.3010$)

27. प्लास्टिक के थैलों पर रोक लग जाने के उपरान्त, एक स्कूल के छात्रों ने यह निर्णय किया कि वह लोगों को वातावरण और यमुना नदी पर प्लास्टिक के थैलों के दुष्प्रभाव से सूचित करेंगे । इस सूचना को अधिक प्रभावी बनाने के लिये उन्होंने दूसरे स्कूलों के साथ मिलकर मेले किये और उन्होंने सिब्जियाँ बेचने वालों, अन्य दुकानदारों और डिपार्टमेन्टल स्टोरों में कागज़ के थैले बाँटे । सभी छात्रों ने प्रण किया कि यमुना नदी को सुरक्षित रखने के लिये वह प्लास्टिक के थैलों का प्रयोग रोक देंगे ।

उपरोक्त पैराग्राफ को पढ़कर निम्न प्रश्नों के उत्तर दें :

- (i) छात्रों द्वारा क्या मूल्य बताए गये ?
- (ii) जैवनिम्नीय बहुलक (पॉलीमर) क्या होते हैं ? इनका एक उदाहरण दें ।
- (iii) क्या पॉलीथीन संघनन (condensation) है अथवा संकलन (addition) पॉलीमर ?

After the ban on plastic bags, students of one school decided to make the people aware of the harmful effects of plastic bags on environment and Yamuna River. To make the awareness more impactful, they organized rally by joining hands with other schools and distributed paper bags to vegetable vendors, shopkeepers and departmental stores. All students pledged not to use polythene bags in future to save Yamuna River.

After reading the above passage, answer the following questions:

- (i) What values are shown by the students?
- (ii) What are biodegradable polymers? Give one example.
- (iii) Is polythene a condensation or an addition polymer?

56/1/3

28. (a) आप कैसे बनाते हैं

2,3

5

- (i) MnO2 से K2MnO4?
- (ii) Na2CrO4 से Na2Cr2O7?
- (b) कारण लिखें :
 - (i) Fe^{2+} की तुलना में $Mn^{2+} + 3$ अवस्था को ऑक्सीकृत होने में अधिक स्थायी है ।
 - (ii) 3d वर्ग के संक्रमण धातुओं में Zn के लिये ऐटमीकरण की ऐन्थेल्पी सबसे कम होती है ।
 - (iii) ऐक्टीनायड तत्त्व बड़े परास में ऑक्सी अवस्थाएँ प्रस्तृत करते हैं ।

अथवा

- (i) 3d वर्ग के उस तत्त्व का नाम लिखें जो अधिकतम ऑक्साइडी अवस्थाएँ प्रस्तुत करता है । यह ऐसा क्यों दर्शाता है ?
- (ii) 3d वर्ग का कौन सा संक्रमण धातु E°(M2+/M) का धनात्मक मान रखता है और क्यों ?
- (iii) Cr3+ और Mn3+ में से कौन अधिक प्रबल ऑक्सीकारक है और क्यों ?
- (iv) लैंथेनाइड वर्ग के उस तत्त्व का नाम लिखें जो +2 ऑक्सीडेशन अवस्था दिखाने के लिये प्रसिद्ध है ।
- (v) इस समीकरण को पूरा कीजिये :

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow$$

- (a) How do you prepare:
 - (i) K_2MnO_4 from MnO_2 ?
 - (ii) Na₂Cr₂O₇ from Na₂CrO₄?
- (b) Account for the following:
 - (i) Mn^{2+} is more stable than Fe²⁺ towards oxidation to +3 state.
 - (ii) The enthalpy of atomization is lowest for Zn in 3d series of the transition elements.
 - (iii) Actinoid elements show wide range of oxidation states.

OR

- (i) Name the element of 3d transition series which shows maximum number of oxidation states. Why does it show so?
- (ii) Which transition metal of 3d series has positive $E^{\circ}(M^{2+}/M)$ value and why?
- (iii) Out of Cr^{3+} and Mn^{3+} , which is a stronger oxidizing agent and why?
- (iv) Name a member of the lanthanoid series which is well known to exhibit +2 oxidation state.
- (v) Complete the following equation:

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow$$

29.	(a)	इन अभिक्रियाओं के क्रियाफल लिख	र्हे इ
-----	-----	--------------------------------	-----------

(i)
$$O + H_2N - OH \xrightarrow{H^+}$$

(ii) $2 C_6 H_5 CHO + सान्द्र \cdot NaOH \longrightarrow$

- (iii) $CH_3COOH \xrightarrow{Cl_2/P}$
- (b) यौगिकों के निम्न युग्मों में अन्तर करने के लिये सरल रासायनिक परीक्षण लिखें :
 - (i) बेन्जेल्डीहाइड और बेन्ज़ोइक अम्ल
 - (ii) प्रोपेनैल और प्रोपेनोन

अथवा

- (a) इनके कारण लिखें:
 - (i) HCN के साथ अभिक्रिया में CH_3COCH_3 से CH_3CHO अधिक क्रियाशील है ।
 - (ii) फ़िनॉल की तुलना में कार्बाक्सिलिक अम्ल अधिक प्रबल अम्ल होता है ।
- (b) निम्न नामधारी अभिक्रियाओं के लिये रासायनिक समीकरण लिखें :
 - (i) वॉल्फ़-किश्नर अपचयन
 - (ii) ऐल्डोल संघनन
 - (iii) कैनिजारो अभिक्रिया

2,3

3, 2

(a) Write the products of the following reactions:

(i)
$$O + H_2N - OH \xrightarrow{H^+}$$

- (ii) $2 C_6 H_5 CHO + conc. NaOH \longrightarrow$
- (iii) $CH_3COOH \xrightarrow{Cl_2/P}$
- (b) Give simple chemical tests to distinguish between the following pairs of compounds:
 - (i) Benzaldehyde and Benzoic acid
 - (ii) Propanal and Propanone

OR

- (a) Account for the following:
 - (i) CH₃CHO is more reactive than CH₃COCH₃ towards reaction with HCN.
 - (ii) Carboxylic acid is a stronger acid than phenol.
- (b) Write the chemical equations to illustrate the following name reactions:
 - (i) Wolff-Kishner reduction
 - (ii) Aldol condensation
 - (iii) Cannizzaro reaction

30. (a) निम्न पदों की परिभाषाएँ लिखें :

- (i) सीमित मोलर संचालकता (Limiting molar conductivity)
- (ii) ईंधन सेल (Fuel cell)
- (b) एक संचालक सेल में 0.1 मोल L^{-1} का KCl का विलयन भरा है । इसका प्रतिरोध $100~\Omega$ है । यदि इसी सेल में 0.02 मोल L^{-1} सान्द्रण का KCl भरा होने पर प्रतिरोध $520~\Omega$ होता है तो 0.02 मोल L^{-1} के KCl के विलयन की संचालकता और मोलर संचालकता परिकलित कीजिये । 0.1 मोल L^{-1} KCl विलयन की संचालकता $1.29 \times 10^{-2}~\Omega^{-1}~{\rm cm}^{-1}$ होती है ।

अथवा

- (a) फ़ैराडे का वैद्युत अपघटन (electrolysis) का पहला नियम लिखें । एक मोल Cu²⁺ आयनों को Cu में अपघटित करने के लिये कितने फैराडे मात्रकों की आवश्यकता होगी ?
- (b) 298 K पर निम्न सेल का emf परिकलित कीजिये:

$$Mg(s) \mid Mg^{2+}(0.1 \text{ M}) \parallel Cu^{2+}(0.01) \mid Cu(s)$$

[दिया है $E_{cell}^{\circ} = +2.71 \text{ V}, 1 \text{ F} = 96500 \text{ C mol}^{-1}$]

- (a) Define the following terms:
 - (i) Limiting molar conductivity
 - (ii) Fuel cell
- (b) Resistance of a conductivity cell filled with 0.1 mol L⁻¹ KCl solution is 100 Ω . If the resistance of the same cell when filled with 0.02 mol L⁻¹ KCl solution is 520 Ω , calculate the conductivity and molar conductivity of 0.02 mol L⁻¹ KCl solution. The conductivity of 0.1 mol L⁻¹ KCl solution is $1.29 \times 10^{-2} \Omega^{-1}$ cm⁻¹.

OR

- (a) State Faraday's first law of electrolysis. How much charge in terms of Faraday is required for the reduction of 1 mol of Cu²⁺ to Cu.
- (b) Calculate emf of the following cell at 298 K:

Mg(s) | Mg²⁺(0.1 M) || Cu²⁺ (0.01) | Cu(s)
[Given
$$E_{cell}^{\circ}$$
 = +2.71 V, 1 F = 96500 C mol⁻¹]

CHEMISTRY MARKING SCHEME DELHI -2014 SET -56/1/3

Q n	Answers	Marks
1	Lyophilic Sol: gum, gelatin, starch, rubber.	1/2
	Lyophobic Sol: Metal Sol, metal sulphides / hydroxides (or any other, any one example in	1/2
	each case)	
2	4-hydroxypentan – 2 – one	1
3	Hydrogen bonding	1
4	[Co(en) ₃] ³⁺ : because (en) is a chelating ligand / bidentate ligand	1/2+ 1/2
5	C ₆ H ₅ NH ₂ < C ₆ H ₅ NHCH ₃ < C ₆ H ₅ N (CH ₃) ₂	1
6.	Glucose and fructose	1
7.	o – nitrophenol	1
8.	Hydrogen / Iron	1
9.	For the solution containing volatile components, the partial vapour pressure of each	1
	component is directly proportional to its mole fraction.	
	In both cases, $p \propto x$ / Henry's Law is a special case of Raoults Law.	1
10	Rate constant (k): is rate of the reaction when the concentration of reactant/s is unity. Half life period of the reaction: is the time in which the concentration of the reactant is reduced to half of its initial concentration.	1+1
11	(i) Froth floatation method : This is based upon the preferential wetting of mineral/ore	1+1
	particles by oil while the gangue particles by water.	
	(ii) Electrolytic refining: is based on the principle of deposition of pure metal on cathode.	
12	d=11.2 g/cm ³	
	z=4	
	$a=4x10^{-8}$ cm	
	$d = \frac{Z \times M}{N_{a} \times a^{3}}$	1/2
	$11.2 = \frac{4 \times M}{6.022 \times 10^{23}} \times (4 \times 10^{-8})^3$	

	$M = \frac{11.2 \times 6.022 \times 10^{23} \times}{10^{23} \times 10^{23} \times 10$	1
	$M = {4}$	1
	$M = 11.2 \times 6.022 \times 16 \times 10^{-1}$	
	$M = 107.9 \text{gmol}^{-1} \text{ or } 107.9 \text{ u}$	
		1/2
13	(i) Schottky defect	1
	(ii) Decreases (iii Alkali metal halides / Ionic substances having almost similar size of cations and anions	1/2 1/2
	(NaCl /KCl)	72
14	$\Delta T_{\rm f} = \frac{K_{\rm fxw_{2x1000}}}{w_{1}xM_{2}}$	1/2
	$0.48K = 5.12Kkgmol^{-1}x \frac{W_2}{75 \times 256}x \ 1000$	1
	$\mathbf{w}_2 = \frac{0.48 \times 75 \times 256}{5.12 \times 1000}$	
		1/2
	$\mathbf{w}_2 = 1.8\mathbf{g}$	
15	(i) (b) is chiral	1
	OR	
	(a) undergoes faster $S_N 2$	
	(ii) (a) $S_N 2$	
	(b) $S_N 1$	1/2, 1/2
16	(i) \bigcirc \bigcirc CI	1
	(ii) \leftarrow $CH_2 - CH_2 - CH_2 Br$	1
17	(i) $Ca_3 P_2 + 6H_2O \rightarrow 3Ca(OH)_2 + 2PH_3$	1
	(ii) $Cu + 2H_2 SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$	1
	(give full credit even if correct products are mentioned)	
	OR	
17	(i) HI < HBr < HCl < HF	1
	(ii) $H_2O < H_2S < H_2Se < H_2Te$	1
18	(i) Tetraamminedichloridochromium (III) ion	1
	(ii) Geometrical isomerism / cis – trans	1
19	(a) $HBr \rightarrow H^+ + Br^-$	
	Ħ.	
	$CH_3 - CH_2 - \bigcirc -H + H^+ \longrightarrow CH_3 - CH_2 - \bigcirc -H$	1/2

	$CH_3 - CH_2 - O - H \longrightarrow CH_3 - CH_2 + HiO$	1/2			
	CH_3 CH_2 Br CH_3 CH_2 Br	1			
	Or				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	OH CHCl ₃ + aq NaOH CHO H* CHO Salicylaldehyde				
20	a) (i) (ii)				
		1+1			
	b) White phosphorus Red phosphorus				
	It exists as discrete tetrahedral P ₄ unit It exist in the form of polymeric chain.	1			
	OR correct structures				
21	(a) CH ₃ Br KCN CH ₃ CN LiAlH ₄ CH ₃ CH ₂ NH ₂ HNO ₂ CH ₃ CH ₂ OH C				
	(b) CH ₃ COOH NH ₃ CH ₃ CONH ₂ Br ₂ CH ₃ NH ₂ CHCl ₃ CH ₃ NC KOH B NaOH C	1/2+1/2+1/2			

	OR	
21	(i)	1
	NO_2 NH_2	
	Sn/HCl O	
	(ii) $CH_3 COOH \longrightarrow CH_3 CONH_2 \longrightarrow Br_2 CH_3 NH_2 +KOH$	1
	О	
	(iii) NH ₂ NH – C- CH ₃	
	$ \begin{array}{c} (CH_3CO)_2O \\ \hline \end{array} $ (Or by any other suitable method.)	1
22	(i) Because in vapour form sulphur (S_2) contains unpaired electrons.	1
	(ii) Because of higher oxidation state (+4) / high charge to size ratio / high polarizing	
	power.	1
	(iii) Because of the two P – H bonds in H ₃ PO ₂ whereas in H ₃ PO ₃ there isone P-H bond	1
23	(i) Disinfectants are the chemicals which kill or prevent the growth of micoorganisms.	1/2+1/2
	Example: 1% phenol, SO ₂ , Cl ₂ (or any other.)	
	(ii) Carbohydrates, lipids, protein, nucleic acids, enzymes (any two)	1/2+1/2
	(iii) Anionic detergents are sodium salts of suphonated long chain alcohols or	
	hydrocarbons / In anionic detergents, the anionic part of the molecule is involved in the	
	cleansing action.	1/2+1/2
	Example : soduim lauryl sulphate, sodium dodecylbenzene sulphonate (any one)	
24	(a) Vitamin C	1
	(b) Peptide linkage	1
	(c) n-hexane or its structure	1
25	(a) $\frac{x}{m} = K p^{1/n}$ or $\log (x/m) = \log K + 1/n \log p$	1

	(b) Reversible in nature/ stable sol/ solvent loving (or any other)	1
	(c) Associated colloid – Soap/ micelles ; Multimolecular colloid - S_8 / gold sol. (or any other)	1/2, 1/2

26	$SO_2 Cl_2 \rightarrow SO_2 + Cl_2$					
	At $t = 0s$ 0.4 atm 0 atm					
	At $t = 100s$ $(0.4 - x)$ atm x atm					
	Pt = 0.4 - x + x + x					
	Pt = 0.4 + x					
	0.7 = 0.4 + x					
	x = 0.3					
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$	1				
	$k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$					
	$k = \frac{2.303}{100} \log \frac{0.4}{0.1}$	1				
	$k = \frac{2.303}{100} \times 0.6021 = 1.39 \times 10^{-2} \text{s}^{-1}$	1				
27	(i) Concern towards environment / caring / socially aware / team work. (atleast two values)					
	(ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-					
	nylon- 6/ any natural polymer					
	(iii) Addition polymer.					
28	(a) (i) $2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$					
	(ii) $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	1				
	(b) (i) Because of 3d ⁵ (half filled) stable configuration of Mn ²⁺	1				
	(ii) Because in zinc there is no unpaired electron / there is no contribution from the inner d					
	electrons.	1				
	(iii) Because of comparable energies of 7s, 6d and 5f orbitals	1				
	OR					
28	(i) Mn, because of presence of 5 unpaired electrons in 3d subshell	1/2 + 1/2				
	(ii) Cu, because enthalpy of atomization and ionisation enthalpy is not compensated by enthalpy	1/2 + 1/2				
	of hydration.	1/ 1/				
	(iii) Mn ³⁺ , because Mn ²⁺ is more stable due to its half filled (3d ⁵) configuration	$\frac{1}{2} + \frac{1}{2}$				
	(iv) Eu ⁺² (Eu)	1				

(v)
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

29	(a)				
	(i)				
	N-OH	1			
	(ii)				
	CH ₂ OH + COONa	1			
	(iii) Cl - CH ₂ - COOH	1			
	(b) (i) Add NaHCO ₃ , benzoic acid will give brisk effervescence whereas benzaldehyde will not	1			
	give this test. (or any other test)				
	(ii) Add tollen's reagent, propanal will give silver mirror whereas propanone will not give this				
	test. (or any other test)	1			
	OR				
29	(a) (i) Because the positve charge on carbonyl carbon of CH ₃ CHO decreases to a lesser extent	1			
	due to one electron releasing (+I effect) CH ₃ group as compared to CH ₃ COCH ₃ (two electron				
	releasing CH ₃ group) and hence more reactive.				
	(ii) Because carboxylate ion (conjugate base) is more resonance stablized than phenoxide ion.	1			
	(b) (i)				
	$C = O \xrightarrow{NH_2NH_2} C = NNH_2 \xrightarrow{KOH/ethylene glycol} CH_2 + N_2$	1			
	(ii)				
	dil. NaOH				
	$2 \text{ CH}_3\text{-CHO} \xrightarrow{\text{dil. NaOH}} \text{CH}_3\text{-CH-CH}_2\text{-CHO}$	1			
	OH (or any other example)	1			
		1			
	OH (or any other example)	1			

30	(a) (i) Limiting molar conductivity – when concentration approaches zero the conductivity is	1
	known as limiting molar conductivity	
	(ii) Fuel cell – are the cells which convert the energy of combustion of fuels to electrical energy.	1
	(b)	
	Cell constant = G^* = conductivity × resistance = 1.29 S/m × 100 Ω = 129 m ⁻¹ = 1.29 cm ⁻¹ Conductivity of 0.02 mol L ⁻¹ KCl solution = cell constant / resistance	1
	$\kappa = \frac{G}{R} = \frac{129 \text{ m}^{-1}}{520 \Omega} = 0.248 \text{ S m}^{-1} = 0.248 \text{ x } 10^{-2} \text{ S cm}^{-1}$	1
	Concentration = $0.02 \text{ mol } \text{L}^{-1}$ = $1000 \times 0.02 \text{ mol } \text{m}^{-3}$	
	= 20 mol m ⁻³	
	Molar conductivity = $\Lambda_m = \frac{\kappa}{c}$	
	$= \frac{248 \times 10^{-3} \text{ S m}^{-1}}{20 \text{ mol m}^{-3}}$	1
	= $124 \times 10^{-4} \text{ S m}^2 \text{mol}^{-1} = 124 \text{ S cm}^2 \text{ mol}^{-1}$	
	OR	
30	(a) The amount of substance deposited at any electrode during electrolysis is directly	1
	proportional to the quantity of electricity passed through the electrolyte. (aq. solution or melt)	
	Charge = $Q = 2F$	1
	(b) E cell = E^0 cell - $\frac{0.059}{n}$ log $\frac{[Mg^{2+}]}{[Cu^{2+}]}$	1
	[60]	1/2
	E cell = $2.71 - \frac{0.059}{2} \log \frac{0.10}{0.01}$	
	$E cell = 2.71 - \frac{0.059}{2} log 10$	1/2
	= 2.71 - 0.0295 = 2.68 V	1

Sr.	Name	Sr.	Name	
No.		No.		
1	Dr. (Mrs.) Sangeeta Bhatia	9	Sh. Partha Sarathi Sarkar	
2	Dr. K.N. Uppadhya	10	Mr. K.M. Abdul Raheem	
3	Prof. R.D. Shukla	11	Mr. Akileswar Mishra	
4	Sh. S.K. Munjal	12	Mrs. Maya George	
5	Sh. Rakesh Dhawan	13	Sh. Virendra Singh Phogat	
6	Sh. D.A. Mishra	14	Dr. (Mrs.) Sunita Ramrakhiani	
7	Sh. Deshbir Singh	15	Ms. Garima Bhutani	
8	Ms. Neeru Sofat			