SET - 1

Series	:	GBM/I	

कोड नं. Code No.

56/1/1

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 11 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कुपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे

Maximum Marks:

अधिकतम अंक : 70

70

Time allowed: 3 hours

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं ।
- (vi) प्रश्न-संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं ।

General

1.

2.

3.

4.

eral		uctions:	
	<i>(i)</i>	All questions are compulsory.	
	(ii)	Questions number 1 to 5 are very short-answer questions and carry 1 mark each	h.
	(iii)	Questions number 6 to 10 are short-answer questions and carry 2 marks each.	
	(iv)	Questions number 11 to 22 are also short-answer questions and carry 3 marked.	rks
	(v)	Question number 23 is a value based question and carry 4 marks.	
	(vi)	Questions number 24 to 26 are long-answer questions and carry 5 marks each.	
	(vii)	Use log tables, if necessary. Use of calculators is not allowed.	
बर W	बिर प्रदी rite the	Mn) के एक ऑक्सी-ऋणायन का सूत्र लिखिए जिसमे यह ऑक्सीकरण अवस्था अपनी वर्ग-संख्या के शत करता है । e formula of an oxo-anion of Manganese (Mn) in which it shows the oxidation al to its group number.	1
निम् (C W	नलिखित H ₃ CH rite IU	च यौगिक का आई.यू.पी.ए.सी. नाम लिखिए : 2)2NCH3 PAC name of the following compound : 2)2NCH3	1
कर Fo	ते पाया r a re	नेक अभिक्रिया $R \longrightarrow P$ के लिए अर्धायु $(t_{1/2})$ को अभिक्रियक की प्रारंभिक सांद्रता पर निर्भर नहीं गया । अभिक्रिया की कोटि क्या है ? action $R \longrightarrow P$, half-life $(t_{1/2})$ is observed to be independent of the initial ation of reactants. What is the order of reaction ?	1
		क्लोरोब्यूट-2-ईन की संरचना लिखिए । e structure of 1-Bromo-4-chlorobut-2-ene.	1
		धेशोषण और रासायनिक अधिशोषण के बीच एक समानता लिखिए । e similarity between Physisorption and Chemisorption	1

भौ 5. Write one similarity between Physisorption and Chemisorption.

1 + 1 = 2

- निम्न अभिक्रियाओं को पूरा कीजिए : 6.
 - $\mathrm{NH_3} + 3\mathrm{C}l_2$ (अधिक) \longrightarrow (i)
 - $XeF_6 + 2H_2O \longrightarrow$ (ii)

अथवा

क्या होता है जब

1 + 1 = 2

- (i) $(NH_4)_2Cr_2O_7$ को गर्म करते हैं ?
- (ii) H_3PO_3 को गर्म करते हैं ? समीकरण लिखिए ।

56/1/1

	(i) (ii)	aplete the following reactions: $NH_3 + 3Cl_2(excess) \longrightarrow$ $XeF_6 + 2H_2O \longrightarrow$ OR at happens when $(NH_4)_2Cr_2O_7$ is heated?	
	Wha	OR at happens when	
	(i)	at happens when	
	(i)		
		(NH) Cr O is heated?	
	(ii)	$(NI_4)_2 CI_2 O_7$ is ficated:	
	(Π)	H ₃ PO ₃ is heated?	
	Writ	te the equations.	
7.	निम्न	पदों की परिभाषा दीजिए :	1 = 2
	(i)	अणुसंख्य गुणधर्म	
	(ii)	मोललता (m)	
	Defi	ne the following terms:	
	(i)	Colligative properties	
	(ii)	Molality (m)	
8.	निम्न	की संरचनाएँ बनाइए : 1 + 1	l = 2
	(i)	$H_2S_2O_7$	
	(ii)	XeF ₆	
	Drav	w the structures of the following:	
	(i)	$H_2S_2O_7$	
	(ii)	XeF ₆	
9.	ऐसीटि	एक अम्ल की वियोजन मात्रा $(lpha)$ का परिकलन कीजिए यदि इसकी मोलर चालकता $({ riangle}_{ m m})$ का मान	
		$5 \mathrm{S} \mathrm{cm}^2\mathrm{mol}^{-1}$ है ।	2
		$\epsilon : \lambda^{0}(H^{+}) = 349.6 \text{ S cm}^{2} \text{ mol}^{-1}$	
	·	$\lambda^{0}(CH_{3}COO^{-}) = 40.9 \text{ S cm}^{2} \text{ mol}^{-1}$	
		ulate the degree of dissociation (α) of acetic acid if its molar conductivity (\wedge_m) is $5 \text{ S cm}^2 \text{mol}^{-1}$.	
	Give	$\sin \lambda^{o}(H^{+}) = 349.6 \text{ S cm}^{2} \text{ mol}^{-1} \text{ and } \lambda^{o}(CH_{3}COO^{-}) = 40.9 \text{ S cm}^{2} \text{ mol}^{-1}$	

निम्नलिखित अभिक्रियाओं से सम्बन्धित समीकरणों को लिखिए : 10.

2

- वोल्फ-किश्नर अपचयन (i)
- ईटार्ड अभिक्रिया (ii)

Write the equations involved in the following reactions:

- Wolff-Kishner reduction (i)
- (ii) Etard reaction

11. सूक्रोस के 10% (द्रव्यमान) जलीय विलयन का हिमांक $269.15~\mathrm{K}$ है । यदि शुद्ध जल का हिमांक $273.15~\mathrm{K}$ है तो ग्लुकोस के 10% जलीय विलयन का हिमांक परिकलित कीजिए ।

3

दिया है : मोलर द्रव्यमान (सूक्रोस) = 342 g mol^{-1} मोलर द्रव्यमान (ग्लूकोस) = 180 g mol^{-1}

A 10% solution (by mass) of sucrose in water has freezing point of 269.15 K. Calculate the freezing point of 10% glucose in water, if freezing point of pure water is 273.15 K.

Given: (Molar mass of sucrose = 342 g mol^{-1}) (Molar mass of glucose = 180 g mol^{-1})

- 12. (अ) Ag की कितनी मात्रा कैथोड पर निक्षेपित होगी यदि $AgNO_3$ के विलयन को 2 ऐम्पियर की धारा से 15 मिनट तक वैद्युत अपर्घाटित किया गया ? 2+1=3 (दिया है : मोलर द्रव्यमान : Ag=108 g mol^{-1} 1F=96500 C mol^{-1}).
 - (ब) 'ईंधन सेल' को परिभाषित कीजिए ।
 - (a) Calculate the mass of Ag deposited at cathode when a current of 2 amperes was passed through a solution of AgNO₃ for 15 minutes.

(Given : Molar mass of Ag = $108 \text{ g mol}^{-1} 1F = 96500 \text{ C mol}^{-1}$)

- (b) Define fuel cell.
- 13. (i) संकुल $[Co(NH_3)_6][Cr(CN)_6]$ किस प्रकार की समावयवता दिखाता है ? $1 \times 3 = 3$
 - (ii) $[Ni(H_2O)_6]^{2+}$ का विलयन हरा क्यों होता है, जबिक $[Ni(CN)_4]^{2-}$ का विलयन रंगहीन है ? (Ni का परमाणु क्रमांक = 28)
 - (iii) संकुल $[\mathrm{Co(NH_3)_5(CO_3)}]Cl$ का IUPAC नाम लिखिए ।
 - (i) What type of isomerism is shown by the complex $[Co(NH_3)_6]$ $[Cr(CN)_6]$?
 - (ii) Why a solution of $[Ni(H_2O)_6]^{2+}$ is green while a solution of $[Ni(CN)_4]^{2-}$ is colourless? (At. no. of Ni = 28)
 - (iii) Write the IUPAC name of the following complex: $[Co(NH_3)_5(CO_3)]Cl$.
- 14. निम्न में से प्रत्येक के बीच एक अंतर लिखिए :

 $1 \times 3 = 3$

- (i) द्रवविरागी सॉल एवं द्रवरागी सॉल
- (ii) विलयन एवं कोलॉइड
- (iii) समांगी उत्प्रेरण एवं विषमांगी उत्प्रेरण

Write one difference in each of the following:

- (i) Lyophobic sol and Lyophilic sol
- (ii) Solution and Colloid
- (iii) Homogeneous catalysis and Heterogeneous catalysis

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

t/s	0	300	600
$[N_2O_5]/\text{mol }L^{-1}$	1.6×10^{-2}	0.8×10^{-2}	0.4×10^{-2}

- (अ) यह दर्शाइए कि अभिक्रिया प्रथम कोटि की है।
- (ब) अर्धायु की गणना कीजिए।

(दिया है :
$$\log 2 = 0.3010$$
, $\log 4 = 0.6021$)

Following data are obtained for the reaction:

$$N_2O_5 \to 2NO_2 + \frac{1}{2}O_2$$

t/s	0	300	600
$[N_2O_5]/\text{mol }L^{-1}$	1.6×10^{-2}	0.8×10^{-2}	0.4×10^{-2}

- (a) Show that it follows first order reaction.
- (b) Calculate the half-life.

(Given
$$\log 2 = 0.3010 \log 4 = 0.6021$$
)

16. आपको निम्नलिखित यौगिक दिये गए हैं :

 $1 \times 3 = 3$

[P.T.O.

- 2-ब्रोमोपेन्टेन, 2-ब्रोमो-2-मेथिलब्यूटेन, 1-ब्रोमोपेन्टेन
- (i) $S_N 2$ अभिक्रिया में सबसे अधिक अभिक्रियाशील यौगिक का नाम लिखिए ।
- (ii) ध्रवण घूर्णक यौगिक का नाम लिखिए ।
- (iii) β-विलोपन में सबसे अधिक अभिक्रियाशील यौगिक का नाम लिखिए ।

Following compounds are given to you:

- 2-Bromopentane, 2-Bromo-2-methylbutane, 1-Bromopentane
- (i) Write the compound which is most reactive towards S_N^2 reaction.
- (ii) Write the compound which is optically active.
- (iii) Write the compound which is most reactive towards β -elimination reaction.
- 17. (अ) जर्मेनियम के परिष्करण में काम आने वाली विधि से संबंधित सिद्धान्त का उल्लेख कीजिए । $1 \times 3 = 3$
 - (ब) PbS तथा PbCO₃ में से (लेड के अयस्क), किस एक को मुख्यतया: फेन प्लवन विधि से सांद्रित किया जाता है ?
 - (स) ऐलुमिनियम के निष्कर्षण में निक्षालन का क्या महत्त्व है ?
 - (a) Write the principle of method used for the refining of germanium.
 - (b) Out of PbS and PbCO₃ (ores of lead), which one is concentrated by froth floatation process preferably?

5

(c) What is the significance of leaching in the extraction of aluminium?

18. निम्न अभिक्रियाओं में A, B तथा C यौगिकों की संरचना लिखिए :

 $1\frac{1}{2} \times 2 = 3$

$$(i) \qquad C_6 H_5 Br \xrightarrow{\quad Mg/शुष्क \ \, \mbox{\'e} \ \, \mbox{\'e} \ \, \mbox{\'e} \ \, \mbox{$ A$} \xrightarrow{\quad \ \, \mbox{$ (a)$ $CO_{2(g)}$} \ \, \mbox{$ C$} \ \, \mbox{$ B$} \xrightarrow{\quad \ \, \mbox{$ PCl_5$} \ \, \mbox{$ PCl_5$} \ \, \mbox{$ (b)$ H_3O^+} \ \, \mbox{$ B$} \xrightarrow{\quad \ \, \mbox{$ PCl_5$} \ \, \mbox{$ PCl_5$} \ \, \mbox{$ (b)$ H_3O^+} \ \, \mbox{$ B$} \xrightarrow{\quad \ \, \mbox{$ PCl_5$} \ \, \mbox{$ (b)$ H_3O^+} \ \, \mbox{$ B$} \xrightarrow{\quad \ \, \mbox{$ PCl_5$} \ \, \mbox{$ (b)$ H_3O^+} \ \, \mbo$$

अथवा

निम्नलिखित रूपांतरणों को अधिकतम दो चरणों में कीजिए :

 $1 \times 3 = 3$

- (i) बेन्ज़ोइक अम्ल से बेन्ज़ेल्डिहाइड
- (ii) एथील बेन्जीन से बेन्जोइक अम्ल
- (iii) प्रोपेनोन से प्रोपीन

Write structures of compounds A, B and C in each of the following reactions:

(i)
$$C_6H_5Br \xrightarrow{Mg/dry \text{ ether}} A \xrightarrow{(a) CO_{2(g)}} B \xrightarrow{PCl_5} C$$

(ii)
$$CH_3CN \xrightarrow{(a) SnCl_2/HCl} A \xrightarrow{dil. NaOH} B \xrightarrow{\Delta} C$$

OR

Do the following conversions in not more than two steps:

- (i) Benzoic acid to benzaldehyde
- (ii) Ethyl benzene to Benzoic acid
- (iii) Prapanone to Propene

19. निम्नलिखित बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों की संरचना लिखिए :

 $1 \times 3 = 3$

- (i) डेक्रॉन
- (ii) मेलैमीन-फॉर्मेल्डीहाइड बहुलक
- (iii) ब्यूना-N

Write the structures of the monomers used for getting the following polymers:

- (i) Dacron
- (ii) Melamine formaldehyde polymer
- (iii) Buna-N

20. निम्न को परिभाषित कीजिए :

 $1 \times 3 = 3$

- (i) ऋणायनी अपमार्जक
- (ii) विस्तृत स्पेक्ट्रम प्रतिजीवाणु
- (iii) पूतिरोधी

Define the following:

- (i) Anionic detergents
- (ii) Broad spectrum antibiotics
- (iii) Antiseptic

56/1/1

21. कारण दीजिए : $1 \times 3 = 3$

- (i) तापीय स्थायित्व H_2O से H_2Te तक कम होता जाता है ।
- (ii) क्लोराइड आयन की अपेक्षा फ्लोराइड आयन की जलयोजन एन्थेल्पी उच्चतर होती है ।
- (iii) नाइट्रोजन पेन्टाहैलाइड नहीं बनाता ।

Give reasons:

- (i) Thermal stability decreases from H_2O to H_2Te .
- (ii) Fluoride ion has higher hydration enthalpy than chloride ion.
- (iii) Nitrogen does not form pentahalide.

22. कारण लिखिए : $1 \times 3 = 3$

- (i) ऐनिलीन का ऐसीटिलन इसका सिक्रयण प्रभाव कम करता है ।
- (ii) CH_3NH_2 का क्षारकीय गुण $C_6H_5NH_2$ की तुलना में अधिक होता है ।
- (iii) यद्यपि $-NH_2$ समूह o/p निर्देशक होता है फिर भी ऐनिलीन नाइट्रीकरण द्वारा यथेष्ट मात्रा में मेटानाइट्रोएनीलीन देती है ।

Give reasons:

- (i) Acetylation of aniline reduces its activation effect.
- (ii) CH_3NH_2 is more basic than $C_6H_5NH_2$.
- (iii) Although –NH₂ is o/p directing group, yet aniline on nitration gives a significant amount of m-nitroaniline.
- 23. टी.वी. में एक प्रोग्राम में ब्रेड तथा दूसरे बेकरी उत्पादों में पोटैशियम ब्रोमेट और पोटैशियम आयोडेट जैसे कार्सनोजेनिक (कैंसरकारी) रसायनों की उपस्थिति देखने के बाद, रितु, बारहवीं कक्षा की छात्रा, ने दूसरों को खाद्य-पदार्थों में इन कार्सनोजेन से होने वाले नुकसान के बारे में जागृत करने का निश्चय किया । वह स्कूल प्रधानाचार्य से मिली और उनसे कैन्टीन ठेकेदार को आदेश देंने का आग्रह किया कि वह विद्यार्थियों को सैन्डिवच, पिज्जा, बर्गर और दूसरे बेकरी उत्पाद न बेचें । प्रधानाचार्य ने तत्काल कदम उठाते हुए कैन्टीन ठेकेदार को बेकरी उत्पादों की जगह प्रोटीन एवं विटामिन से भरपूर खाना जैसे फल, सलाद, अंकुरित पदार्थ, रखने का आदेश दिया । इस निर्णय का सभी माता-पिता तथा विद्यार्थियों ने स्वागत किया ।

उपर्युक्त प्रकरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) रितु द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
- (ii) आमतौर से ब्रेड में कार्बोहाइड्रेट का कौन सा पॉलिसैकैराइड घटक होता है ?
- (iii) प्रोटीनों की द्वितीयक संरचना के दो प्रकार लिखिए ।
- (iv) जल विलेय विटामिन के दो उदाहरण दीजिए ।

4

After watching a programme on TV about the presence of carcinogens(cancer causing agents) Potassium bromate and Potassium iodate in bread and other bakery products, Ritu a class XII student decided to aware others about the adverse effects of these carcinogens in foods. She consulted the school principal and requested him to instruct canteen contractor to stop selling sandwiches, pizza, burgers and other bakery products to the students. Principal took an immediate action and instructed the canteen contractor to replace the bakery products with some proteins and vitamins rich food like fruits, salads, sprouts etc. The decision was welcomed by the parents and students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Ritu?
- (ii) Which polysaccharide component of carbohydrates is commonly present in bread?
- (iii) Write the two types of secondary structure of proteins.
- (iv) Give two examples of water soluble vitamins.

24. (अ) निम्न के कारण लिखिए:

3 + 2 = 5

- (i) संक्रमण धात्एँ अनेक संकुल यौगिकों की रचना करते हैं ।
- (ii) संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय है, जबिक उच्चतम ऑक्साइड उभयधर्मी या अम्लीय होता है ।
- (iii) Mn^{3+}/Mn^{2+} युग्म के लिए E° का मान Cr^{3+}/Cr^{2+} की तुलना में बहुत अधिक धनात्मक (+1.57~V) होता है ।
- (ब) लैन्थेनॉयड एवं ऐक्टिनॉयड के रसायन के बीच एक समानता और एक अंतर लिखिए ।

अथवा

- (अ) (i) संक्रमण धातुओं की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता p-ब्लॉक के तत्वों से किस प्रकार भिन्न हैं ?
 - (ii) Cu⁺ और Cu²⁺ ती तुलना में, कौन सा आयन जलीय विलयन में अस्थायी है और क्यों ?
 - (iii) $Cr_2O_7^{2-}$ का नारंगी रंग क्षारीय माध्यम में पीले रंग में बदल जाता है । क्यों ? 3+2=5
- (ब) एक्टिनॉयड का रसायन लैन्थेनॉयड की तुलना में जटिल है । दो कारण दीजिए ।
- (a) Account for the following:
 - (i) Transition metals form large number of complex compounds.
 - (ii) The lowest oxide of transition metal is basic whereas the highest oxide is amphoteric or acidic.
 - (iii) E° value for the Mn^{3+}/Mn^{2+} couple is highly positive (+1.57 V) as compare to Cr^{3+}/Cr^{2+} .

(b) Write one similarity and one difference between the chemistry of lanthanoid and actinoid elements.

OR

- (a) (i) How is the variability in oxidation states of transition metals different from that of the p-block elements?
 - (ii) Out of Cu⁺ and Cu²⁺, which ion is unstable in aqueous solution and why?
 - (iii) Orange colour of $\operatorname{Cr_2O_7}^{2-}$ ion changes to yellow when treated with an alkali. Why ?
- (b) Chemistry of actinoids is complicated as compared to lanthanoids. Give two reasons.
- 25. (अ) एक तत्त्व का परमाण्विक द्रव्यमान 93 g mol^{-1} और घनत्व 11.5 g cm^{-3} है । यदि एकक कोष्ठिका के कोर की लम्बाई 300 pm है, तो एकक कोष्ठिका के प्रकार की पहचान कीजिए । 3+2=5
 - (ब) अक्रिस्टलीय ठोस एवं क्रिस्टलीय ठोस के बीच दो अंतर लिखिए ।

अथवा

- (अ) ऐलुमिनियम के 8.1~g में कितनी एकक कोष्टिकाएँ होंगी यदि यह f.c.c. संरचना में क्रिस्टलीकृत होता है । (Al का परमाण्विक द्रव्यमान = $27~g~mol^{-1}$) 2+3=5
- (ब) कारण दीजिए :
 - (i) स्टाइकियोमीट्री दोष में, NaCl शाट्की दोष दिखाता है न कि फ्रेंकेल दोष ।
 - (ii) सिलिकन को फॉस्फोरस के साथ अपमिश्रित करने पर n-प्रकार का अर्धचालक प्राप्त होता है ।
 - (iii) फेरीचुंबकत्व पदार्थ, प्रतिलोह चुंबकत्व पदार्थों की तुलना में बेहतर चुंबकीय गुण दर्शाते हैं ।
- (a) An element has atomic mass 93 g mol⁻¹ and density 11.5 g cm⁻³. If the edge length of its unit cell is 300 pm, identify the type of unit cell.
- (b) Write any two differences between amorphous solids and crystalline solids.

OR

- (a) Calculate the number of unit cells in 8.1 g of aluminium if it crystallizes in a f.c.c. structure. (Atomic mass of $Al = 27 \text{ g mol}^{-1}$)
- (b) Give reasons:
 - (i) In stoichiometric defects, NaCl exhibits Schottky defect and not Frenkel defect.
 - (ii) Silicon on doping with Phosphorus forms n-type semiconductor.
 - (iii) Ferrimagnetic substances show better magnetism than antiferromagnetic substances.

26. (अ) निम्न अभिक्रियाओं के उत्पादों को लिखिए :

$$3 + 2 = 5$$

(i)
$$COOH \xrightarrow{COOH} CH_3CO)_2O \xrightarrow{H^+} COOH$$

$$(ii) \quad \begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH}_3 - \text{CH} - \text{O} - \text{CH}_2 - \text{CH}_3 \xrightarrow{\quad \text{HI} \quad ?} ? + ? \end{array}$$

(iii)
$$CH_3 - CH = CH - CH_2 - OH \xrightarrow{PCC}$$
?

- (ब) निम्नलिखित यौगिक युगलों में विभेद करने के लिए सरल रासायिनक परीक्षण दीजिए :
 - (i) ऐथेनॉल और फ़ीनॉल
 - (ii) प्रोपेनॉल और 2-मेथिलप्रोपेन-2-ऑल

अथवा

(अ) निम्नलिखित अभिक्रियाओं में प्रयुक्त अभिकर्मकों के सूत्र लिखिए :

2 + 2 + 1 = 5

- (i) फ़ीनॉल का 2,4,6-ट्राइब्रोमोफ़ीनॉल में ब्रोमीनन
- (ii) प्रोपीन का हाइड्रोबोरॉनन और ऑक्सीकरण के द्वारा प्रोपेनॉल का बनना
- (ब) निम्नलिखित यौगिक समूहों को उनके सामने दर्शाए गुणधर्मों के बढ़ते क्रम में व्यवस्थित कीजिए :
 - (i) p-नाइट्रोफ़ीनॉल, ऐथेनॉल, फीनॉल (अम्लीय स्वभाव)
 - (ii) प्रोपेनॉल, प्रोपेन, प्रोपेनैल (क्वथनांक)
- (स) निम्नलिखित अभिक्रिया (घुमावदार तीर अंकन का उपयोग करते हुए) की क्रियाविधि लिखिए :

(a) Write the product(s) in the following reactions:

(i)
$$COOH \xrightarrow{COOH} \frac{(CH_3CO)_2O}{H^+}$$
?

(ii)
$$CH_3 - CH - O - CH_2 - CH_3 \xrightarrow{HI} ? + ?$$

(iii)
$$CH_3 - CH = CH - CH_2 - OH \xrightarrow{PCC}$$
?

56/1/1

- (b) Give simple chemical tests to distinguish between the following pairs of compounds:
 - (i) Ethanol and Phenol
 - (ii) Propanol and 2-methylpropan-2-ol

OR

- (a) Write the formula of reagents used in the following reactions:
 - (i) Bromination of phenol to 2,4,6-tribromophenol
 - (ii) Hydroboration of propene and then oxidation to propanol.
- (b) Arrange the following compound groups in the increasing order of their property indicated:
 - (i) p-nitrophenol, ethanol, phenol (acidic character)
 - (ii) Propanol, Propane, Propanal (boiling point)
- (c) Write the mechanism (using curved arrow notation) of the following reaction:

$$\operatorname{CH_3-CH_2-\overset{+}{O}H_2} \xrightarrow{\operatorname{CH_3CH_2OH}} \operatorname{CH_3-CH_2-\overset{+}{O}} - \operatorname{CH_2-CH_3+H_2O}$$

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

Set 56/1/1

Q.No	Value Points	Marks
1	MnO ₄ / KMnO ₄	1
2	N-Ethyl-N-methylethanamine	1
3	First order	1
4	BrCH ₂ CH=CHCH ₂ Cl	1
5	Both are surface phenomenon / both increase with increase in surface area (or any other correct similarity)	1
6	(i)NH ₃ +3 Cl ₂ (excess) \rightarrow NCl ₃ + 3HCl	1
	(ii) $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$	1
	OR	
6	(i) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + 4H_2O + Cr_2O_3$	1
	(ii) 4H ₃ PO ₃ → 3H ₃ PO ₄ +PH ₃	1
7	(i) Properties that are independent of nature of solute and depend on number of moles of solute only.	1
	(ii) Number of moles of solute dissolved per kg of the solvent .	1
8	(i) Number of moles of solute dissolved per kg of the solvene.	1
	O O O O O O O O O O O O O O O O O O O	
	(ii) F F F	1
9	$\Lambda^{\circ}_{CH3COOH} = \lambda^{\circ}_{CH3COO-} + \lambda^{\circ}_{H+}$	1/2
	$= 40.9 + 349.6 = 390.5 \text{ S cm}^2/\text{mol}$	1/2
	Now, $\alpha = \Lambda_m / \Lambda_m^{\circ}$	1/2
	= 39.05 / 390.5 = 0.1	1/2
10.	(i) $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1

	-	
	CH ₃ CH(OCrOHCl ₂) ₂ CHO	
	$+ \text{CrO}_2\text{Cl}_2 \xrightarrow{\text{CS}_2} \longrightarrow \xrightarrow{\text{H}_8\text{O}^*} \longrightarrow$	
	Toluene Chromium complex Benzaldehyde	
	or	
		1
	CH, CHO	
	(i) CrO2Cl2, CS2	
	Toluene (ii) H3O+ Benzaldehyde	
11	$\Delta T_f = K_f m$	1/2
	Here , $m = w_2 x 1000 / M_2 X M_1$	
	273.15-269.15 = K _f x 10 x1000/ 342 x90	1
	K _f = 12.3 K kg/mol	1/2
	$\Delta T_f = K_f m$	
	= 12.3 x 10 x1000/ 180x90	
	= 7.6 K	
12	$T_f = 273.15 - 7.6 = 265.55 \text{ (or any other correct method)}$	1
12	(i)m = ZIt	1/2
	= <u>108x2x15 x60</u>	1
	1×96500	1/2
	= 2.01 g (or any other correct method) (ii) Cells that converts the energy of combustion of fuels directly into electrical	1
	energy.	1
13	(i) Coordination isomerism	1
	(ii) Unpaired electrons in $[Ni(H_2O)_6]^{2+}$ / d-d transition	1
	(iii) Pentaamminecarbonatocobalt(III) Chloride	1
14	(i) Lyophobic are liquid(dispersion medium)-hating and lyophillic are	1
	liquid(dispersion medium)-loving colloids.	
	(ii) Solution is a Homogenous mixture while colloid is heterogenous mixture	1
	/ does not show Tyndall effect -shows Tyndall effect.	
	(iii) Homogenous catalysis: reactants and catalyst are in same phase -	1
	Heterogeneous catalysis: reactants and catalyst are not in same phase.	
	(or any other correct difference)	11
15	(a) $k = \frac{2.303}{t} \log \frac{[A]o}{[A]}$	1/2
	$= \frac{2.303}{300} \log \frac{1.6 \times 10^{-2}}{0.8 \times 10^{-2}}$	
	$-\frac{1}{300}$ $\frac{10g}{0.8 \times 10^{-2}}$	
	2.303	1/2
	$= \frac{2.303}{300} \log 2 = 2.31 \times 10^{-3} \text{ s}^{-1}$	/2
	0.000 [A]	
	At 600 s, $k = \frac{2.303}{t} \log \frac{[A]o}{[A]}$	1/2
		, -
	$= \frac{2.303}{600} \log \frac{1.6 \times 10^{-2}}{0.4 \times 10^{-2}}$	
	$= 2.31 \times 10^{-3} \text{ s}^{-1}$	
	k is constant when using first order equation therefore it follows first order	
	kinetics.	1/2
	or	
	VI	

		1		
	In equal time interval, half of the reactant gets converted into product and			
	the rate of reaction is independent of concentration of reactant, so it is a			
	first order reaction.			
	(b) $t_{1/2} = 0.693/k$			
	$= 0.693/ 2.31 \times 10^{-3}$			
	= 300 s			
	(If student writes directly that half life is 300 s, award full marks)	1		
16	(i) 1- Bromopentane	1		
	(ii) 2-Bromopentane	1		
	(iii) 2-Bromo-2-methylbutane	1		
17	(i) The impurities are more soluble in the melt than in the solid state of the metal.	1		
	(ii)PbS			
	(iii)Impurities like SiO ₂ etc are removed by using NaOH solution and pure alumina is	1		
	obtained .			
18.	(i) A : C_6H_5MgBr B : C_6H_5COOH C : C_6H_5COCI	½ × 3		
		½ × 3		
	(ii)A: CH ₃ CHO B: CH ₃ CH(OH)CH ₂ CHO C: CH ₃ CH=CHCHO			
	OD			
	OR OH COOL			
18	(i) C_6H_5COOH soci ₂ C_6H_5COCI H_2 , Pd - BaSO ₄ C_6H_5CHO	1		
	(ii) C ₆ H ₅ C ₂ H ₅ <u>K₂Cr₂O₇/ H⁺</u> C ₆ H ₅ COOH			
	(II) O6I 15O2I 15 K2UI2O7/H O6I 15OOOI I	1		
	(iii)CH ₃ COCH ₃ NaBH ₄ CH ₃ CH(OH)CH ₃ conc.H ₂ SO ₄ CH ₃ CH=CH ₂			
	(III) OT 13 OF 11 OT 13 OT 13 OF 11 OT 13	1		
	(or any other correct method)			
19.		1/2+1/2		
	(i) HOCH₂CH₂OH + HOOC ← O ← COOH			
	(ii)	1/2+1/2		
	$H_2N \searrow N \searrow NH_2$			
	H_2N N N N			
	NH ₂			
	+ HCHO			
	(iii)CH ₂ =CH-CH=CH ₂ + CH ₂ =CHCN	1/2 + 1/2		
20.	(i) Anionic detergents are sodium salts of sulphonated long chain alcohols or	1		
-0.	hydrocarbons / alkylbenzene sulphonate or detergents whose anionic part is	-		
	involved in cleansing action.			
		1		
	(ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of	1		
	(ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria.			
	(ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes	1		
	(ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues.	1		
21	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in 	1		
21	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. 	1 1 1		
21	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / 	1		
21	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. 	1 1 1		
	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. (iii) Absence of d-orbitals. 	1 1 1		
21	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. (iii) Absence of d-orbitals. (i) Due to the resonance, the electron pair of nitrogen atom gets delocalised 	1 1 1		
	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. (iii) Absence of d-orbitals. 	1 1 1		
	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. (iii) Absence of d-orbitals. (i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen 	1 1 1 1		
	 (ii)Broad spectrum antibiotics: Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria. (iii) Antiseptics are the chemicals which either kill or prevent growth of microbes on living tissues. (i) Due to the decrease in bond dissociation enthalpy / due to increase in atomic size from O to Te. (ii) Due to small size of fluoride ion / high charge density of fluoride ion / high charge size ratio of fluoride ion. (iii) Absence of d-orbitals. (i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases 	1 1 1		

23	(i)concerned, caring, socially alert, leadership (or any other 2 values) (ii)starch				
	(iii)α -Helix and β-pleated sheets		1/2 + 1/2		
	(iv)Vitamin B / B_1 / B_2 / B_6 / C (any two)		1/2 + 1/2		
24	a) (i) Due to small size and high ionic charge / availability of d orbitals.				
- '	_ · · · · · · · · · · · · · · · · · · ·	-	1		
	(ii) Higher is the oxidation state higher is the acidic character / as the oxidation state of a metal increases, ionic character decreases				
	(iii) Because Mn ²⁺ has d ⁵ as a stable configuration whereas Cr ³⁺ is more				
	stable due to stable t^3_{2g}	omiguration whereas Ci is more	1		
	e e	ation atota/hath aharr agatusation/			
	b) Similarity-both are stable in +3 oxid		1		
	irregular electronic configuration (or an	•	-		
	Difference- actinoids are radioactive an		1		
	wide range of oxidation states but lanth	anoids don't (or any other correct	*		
	difference)				
	<u> </u>	OR .			
24	a) i) In p block elements the difference metals the difference is 1	in oxidation state is 2 and in transition	1		
	ii) Cu ⁺ , due to disproportionation react	ion / low hydration enthalpy	1/2 + 1/2		
	iii) Due to formation of chromate ion /		1		
	b) Actinoids are radioactive, actinoids	_	1 + 1		
25	(a) $\rho = (zxM)/a^3x N_a$	U	1/2		
	$11.5 = z \times 93 / [(300 \times 10^{-10})^3 \times 6.02 \times 10^{23}]$				
	Z = 2.0		1/2		
	Body centred cubic(bcc)		1		
	(b)				
	Amorphous solids	Crystalline solids			
	Short range order	Long range order	1+1		
	Isotropic	Anisotropic			
		(or any other correct difference)			
25	a) n= given mass / molar mass				
25	= 8.1 / 27 mol		1/2		
	Number of atoms= $\frac{8.1}{27}$ x 6.022x10 ²³		/2 1/ ₂		
	<u> </u>	,	/2		
	Number of atoms in one unit cell= 4 (fcc	,	1/		
	Number of unit cells = $\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right]$ /	4	1/2		
	$= 4.5 \times 10^{22}$		1/2		
	Or		1/		
	27g of Al contains= 6.022x10 ²³ atoms	0.4	1/2		
	8.1g of Al contains =(6.022x10 ²³ / 27) x No of unit cells = total no of atoms /4	8.1	1/2		
			1/		
	$= \left[\frac{81}{27} \times 6.022 \times 10^{23}\right] / 4$		1/2		
	=4.5 x10 ²²	d onion / laws size of and it will be	1/2		
	b) i) Due to comparable size of cation an		1		
	ii) P has 5 valence e, an extra electron semiconductor.		1		
	iii)In ferrimagnetism ,domains / magnetic	•			
	direction in unequal numbers while in an		1		
	opposite direction in equal numbers so the				
	completely ,net magnetism is zero / diag	rammano representation.			

26	СООН	
	OCOCH ₃	1
	a) i)	
	ii) (CH ₃) ₂ CHOH and CH ₃ CH ₂ I	1
	iii) CH ₃ CH=CHCHO	1
	b) i) Add neutral FeCl ₃ to both the compounds, phenol gives violet complex.	1
	ii) Add anhy ZnCl ₂ and conc. HCl to both the compounds,	1
	2-methyl propan-2-ol gives turbidity immediately. (or any other correct test)	
	OR	
26	a) i)Aq. Br ₂	1
	$\text{ii})B_2H_6$, H_2O_2 and OH^-	1
	b) i) ethanol <phenol<p-nitrophenol< td=""><td>1</td></phenol<p-nitrophenol<>	1
	ii) propane <propanal<propanol< td=""><td>1</td></propanal<propanol<>	1
	c)	
	CH ₃ CH ₂ -O: + CH ₃ -CH ₂ OH	
	H	1

1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran	19	Chauhan	
9	Ms. Neeru Sofat	20	Kaushik	
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	