SET - 3

Series:	GBM/1
---------	-------

कोड नं. Code No.

56/1/3

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित पृष्ठ 11 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कुपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जायेगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 11 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : **70** Time allowed : **3** hours Maximum Marks : **70**

सामान्य निर्देश:

- (i) **सभी** प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 23 मूल्याधारित प्रश्न है और इसके लिए **4** अंक हैं।
- (vi) प्रश्न-संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैलकुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- All questions are compulsory. *(i)*
- (ii) Questions number 1 to 5 are very short-answer questions and carry 1 mark each.
- Questions number 6 to 10 are short-answer questions and carry 2 marks each. (iii)
- Questions number 11 to 22 are also short-answer questions and carry 3 marks (iv)each.
- (v) *Question number 23 is a value based question and carry 4 marks.*
- Questions number 24 to 26 are long-answer questions and carry 5 marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- उत्प्रेरक का क्या प्रभाव होता है 1.

1

- (i) गिब्ज ऊर्जा (ΔG) और
- अभिक्रिया की सिक्रयण ऊर्जा पर ? (ii)

What is the effect of catalyst on:

- Gibbs energy (ΔG) and (i)
- activation energy of a reaction? (ii)
- भौतिक अधिशोषण और रासायनिक अधिशोषण के बीच एक समानता लिखिए । 2.

1

1

Write one similarity between Physisorption and Chemisorption.

मैंगनीज (Mn) के एक ऑक्सी-ऋणायन का सूत्र लिखिए जिसमे यह ऑक्सीकरण अवस्था अपनी वर्ग-संख्या के 3. बराबर प्रदर्शित करता है ।

Write the formula of an oxo-anion of Manganese (Mn) in which it shows the oxidation state equal to its group number.

3-ब्रोमो-2-मेथिलप्रोप-1-ईन की संरचना लिखिए । 4.

1

Write the structure of 3-Bromo-2-methylprop-1-ene.

निम्नलिखित यौगिक का IUPAC नाम लिखिए: 5.

1

$$(CH_3)_2N - CH_2CH_3$$

Write IUPAC name of the following compound:

$$(CH_3)_2N - CH_2CH_3$$

निम्नलिखित में होने वाली अभिक्रियाओं को लिखिए: 6.

1 + 1 = 2

- क्लीमेन्सन अपचयन (i)
- कैनिजारो अभिक्रिया (ii)

Write the reactions involved in the following reactions:

- Clemmensen reduction (i)
- (ii) Cannizzaro reaction

7.	निम्नलिखित संरचनाओं को आरेखित कीजिए :	1 + 1 = 2
	$(i) H_4 P_2 O_7$	
	(ii) XeOF ₄	
	Draw the structures of the following:	
	$(i) H_4 P_2 O_7$	
	(ii) XeOF ₄	
8.	निम्न पदों को परिभाषित कीजिए :	1 + 1 = 2
	(i) असामान्य मोलर द्रव्यमान	
	(ii) वान्ट हॉफ गुणक (i)	
	Define the following terms:	
	(i) Abnormal molar mass	
	(ii) van't Hoff factor (i)	
9.	ऐसीटिक अम्ल की वियोजन मात्रा ($lpha$) का परिकलन कीजिए यदि इसकी मोलर चाल	कता (^ _m) का मान
	39.05 S cm²mol⁻¹ ਵੈ ।	2
	दिया है: $\lambda^{o}(H^{+}) = 349.6 \text{ S cm}^{2} \text{ mol}^{-1}$	
	$\lambda^{0}(CH_{3}COO^{-}) = 40.9 \text{ S cm}^{2} \text{ mol}^{-1}$	
	Calculate the degree of dissociation (a) of acetic acid if its molar con	ductivity (\land_m) is
	$39.05 \text{ S cm}^2\text{mol}^{-1}$.	111
	Given $\lambda^{o}(H^{+}) = 349.6 \text{ S cm}^{2} \text{ mol}^{-1}$ and $\lambda^{o}(CH_{3}COO^{-}) = 40.9 \text{ S cm}^{2} \text{ mol}^{-1}$	-1
10.	निम्नलिखित रासायनिक समीकरणों को पूर्ण कीजिए :	1+1=2
	(i) $F_2 + 2Cl^- \longrightarrow$	
	(ii) $2XeF_2 + 2H_2O \longrightarrow$	
	क्या होता है जब	1 + 1 = 2
	(i) MnO_2 को HCl के साथ मिलाया जाता है ?	
	(ii) PCl_5 को गर्म किया जाता है ?	
	संबद्ध समीकरणें लिखिए ।	
	Complete the following chemical equations:	
	(i) $F_2 + 2Cl^- \longrightarrow$	
	(ii) $2XeF_2 + 2H_2O \longrightarrow$	
	OR	
	What happens when	
	(i) HCl is added to MnO_2 ?	
	(ii) PCl_5 is heated?	
	Write the equations involved.	

कारण लिखिए : 11. $1 \times 3 = 3$ ऐनिलीन का ऐसीटिलन इसका सिक्रयण प्रभाव कम करता है । CH_3NH_2 का क्षारकीय गुण $C_6H_5NH_2$ की तुलना में अधिक होता है । (iii) यद्यपि -NH2 समूह o/p निर्देशक होता है फिर भी ऐनिलीन नाइट्रीकरण द्वारा यथेष्ट मात्रा में मेटानाइट्रोएनीलीन देती है। Give reasons: Acetylation of aniline reduces its activation effect. (i) (ii) CH₃NH₂ is more basic than C₆H₅NH₂. (iii) Although –NH₂ is o/p directing group, yet aniline on nitration gives a significant amount of m-nitroaniline. कारण दीजिए: 12. $1 \times 3 = 3$ तापीय स्थायित्व $\mathrm{H_2O}$ से $\mathrm{H_2Te}$ तक कम होता जाता है । (i) क्लोराइड आयन की अपेक्षा फ्लोराइड आयन की जलयोजन एन्थेल्पी उच्चतर होती है । (iii) नाइट्रोजन पेन्टाहैलाइड नहीं बनाता । Give reasons: (i) Thermal stability decreases from H_2O to H_2Te . Fluoride ion has higher hydration enthalpy than chloride ion. (ii) Nitrogen does not form pentahalide. निम्नलिखित को परिभाषित कीजिए : 13. $1 \times 3 = 3$ ऋणायनी अपमार्जक (i) सीमित स्पेक्ट्रम प्रतिजीवाणु (ii) (iii) प्रशान्तक Define the following: (i) Anionic detergents Limited spectrum antibiotics (ii) (iii) Tranquilizers निम्नलिखित बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों की संरचनाएँ लिखिए : 14. $1 \times 3 = 3$ नाइलॉन-6 (i)

- (ii) मेलैमीन-फॉर्मेल्डीहाइड बहुलक
- (iii) टेफलॉन

Write the structures of the monomers used for getting the following polymers:

- (i) Nylon-6
- (ii) Melamine formaldehyde polymer
- (iii) Teflon

निम्न अभिक्रियाओं में A, B तथा C यौगिकों की संरचना लिखिए:

$$1\frac{1}{2} \times 2 = 3$$

$$(i) \qquad C_6 H_5 Br \xrightarrow{\quad Mg/ {\overline{\eta} \text{ gen } \hat{\xi} \text{ ur} \quad}} A \xrightarrow{\quad (a) \ CO_{2(g)} \quad} B \xrightarrow{\quad PCl_5 \quad} C$$

(ii)
$$CH_3CN \xrightarrow{(a) SnCl_2/HCl} A \xrightarrow{\ensuremath{\mbox{\ensuremath{\mbox{\sc op}}}} A \xrightarrow{\ensuremath{\mbox{\sc op}}} B \xrightarrow{\Delta} C$$

निम्नलिखित रूपांतरणों को अधिकतम दो चरणों में कीजिए :

 $1 \times 3 = 3$

- बेन्जोइक अम्ल से बेन्जेल्डिहाइड (i)
- (ii) एथील बेन्जीन से बेन्जोइक अम्ल
- (iii) प्रोपेनोन से प्रोपीन

Write structures of compounds A, B and C in each of the following reactions:

(i)
$$C_6H_5Br \xrightarrow{Mg/dry \text{ ether}} A \xrightarrow{(a) CO_{2(g)}} B \xrightarrow{PCl_5} C$$

(i)
$$C_6H_5Br \xrightarrow{Mg/dry \text{ ether}} A \xrightarrow{(a) CO_{2(g)}} B \xrightarrow{PCl_5} C$$

(ii) $CH_3CN \xrightarrow{(a) SnCl_2/HCl} A \xrightarrow{dil. NaOH} B \xrightarrow{\Delta} C$

Do the following conversions in not more than two steps:

- Benzoic acid to benzaldehyde (i)
- (ii) Ethyl benzene to Benzoic acid
- (iii) Prapanone to Propene
- जर्मेनियम के शोधन में प्रयोग में आने वाली विधि का सिद्धांत लिखिए । 16. (अ)
 - PbS और $PbCO_3$ (लेंड के अयस्क), में से किस एक को मुख्यतया: फेन-प्लवन विधि द्वारा सांद्रित (ब) किया जाता है ?
 - एल्मिनियम के निष्कर्षण में निक्षालन का क्या महत्त्व है ? **(स)**

 $1 \times 3 = 3$

- Write the principle of method used for the refining of germanium. (a)
- Out of PbS and PbCO₃ (ores of lead), which one is concentrated by froth (b) floatation process preferably?
- What is the significance of leaching in the extraction of aluminium? (c)
- आपको निम्नलिखित यौगिक दिये गए हैं : 17.

 $1 \times 3 = 3$

- 2-ब्रोमोपेन्टेन, 2-ब्रोमो-2-मेथिलब्यूटेन, 1-ब्रोमोपेन्टेन
- $S_{
 m N}2$ अभिक्रिया में सबसे अधिक अभिक्रियाशील यौगिक का नाम लिखिए । (i)
- ध्रवण घूर्णक यौगिक का नाम लिखिए । (ii)
- (iii) β-विलोपन में सबसे अधिक अभिक्रियाशील यौगिक का नाम लिखिए ।

Following compounds are given to you:

- 2-Bromopentane, 2-Bromo-2-methylbutane, 1-Bromopentane
- (i) Write the compound which is most reactive towards S_N^2 reaction.
- (ii) Write the compound which is optically active.
- (iii) Write the compound which is most reactive towards β -elimination reaction.

56/1/3 5 [P.T.O. 18. निम्न अभिक्रिया के लिए दिये गये आँकड़े प्राप्त हुए :

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

t/s	0	300	600
$[N_2O_5]/\text{mol }L^{-1}$	1.6×10^{-2}	0.8×10^{-2}	0.4×10^{-2}

(अ) यह दर्शाइए कि अभिक्रिया प्रथम कोटि की है।

(ब) अर्धायु की गणना कीजिए ।

(दिया है :
$$\log 2 = 0.3010$$
, $\log 4 = 0.6021$)

Following data are obtained for the reaction:

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

t/s	0	300	600
$[N_2O_5]/\text{mol }L^{-1}$	1.6×10^{-2}	0.8×10^{-2}	0.4×10^{-2}

- (a) Show that it follows first order reaction.
- (b) Calculate the half-life.

(Given
$$\log 2 = 0.3010 \log 4 = 0.6021$$
)

- 19. निम्नलिखित में प्रत्येक के बीच एक-एक अंतर लिखिए :
 - (i) बहुआण्विक कोलॉइड और वृहदाण्विक कोलॉइड
 - (ii) सॉल और जेल
 - (iii) O/W इमल्शन और W/O इमल्शन

 $1 \times 3 = 3$

3

Write one difference between each of the following:

- (i) Multimolecular colloid and Macromolecular colloid
- (ii) Sol and Gel
- (iii) O/W emulsion and W/O emulsion

56/1/3

6

- 20. (i) संकुल $[Co(en)_3]Cl_3$ किस प्रकार की समावयवता दिखाता है ?
 - (ii) $[Co(C_2O_4)_3]^{3-}$ का संकरण और चुंबकीय गुण लिखिए । (परमाणु क्रमांक Co के लिए = 27)
 - (iii) $[Cr(NH_3)_3Cl_3]$ संकुल का IUPAC नाम लिखिए ।
 - 31 9

3

3

What type of isomerism is shown by the complex $[Co(en)_3]Cl_3$?

- (ii) Write the hybridisation and magnetic character of $[Co(C_2O_4)_3]^{3-}$. (At. no. of Co = 27)
- (iii) Write IUPAC name of the following Complex $[Cr(NH_3)_3Cl_3]$
- 21. (अ) Ag की कितनी मात्रा कैथोड पर निक्षेपित होगी यदि $AgNO_3$ के विलयन को 2 ऐम्पियर की धारा से 15 मिनट तक वैद्युत अपघटित किया गया ? 2+1=3 (दिया है : मोलर द्रव्यमान : $Ag=108~g~mol^{-1}~1F=96500~C~mol^{-1}$).
 - (ब) 'ईंधन सेल' को परिभाषित कीजिए ।
 - (a) Calculate the mass of Ag deposited at cathode when a current of 2 amperes was passed through a solution of AgNO₃ for 15 minutes.
 - (Given : Molar mass of $Ag = 108 \text{ g mol}^{-1} 1F = 96500 \text{ C mol}^{-1}$)
 - (b) Define fuel cell.

(i)

22. सूक्रोस के 10% (द्रव्यमान) जलीय विलयन का हिमांक 269.15 K है । यदि शुद्ध जल का हिमांक 273.15 K है तो ग्लूकोस के 10% जलीय विलयन का हिमांक परिकलित कीजिए ।

दिया है : मोलर द्रव्यमान (सूक्रोस) = 342 g mol^{-1} मोलर द्रव्यमान (ग्लूकोस) = 180 g mol^{-1}

A 10% solution (by mass) of sucrose in water has freezing point of 269.15 K. Calculate the freezing point of 10% glucose in water, if freezing point of pure water is 273.15 K.

Given: (Molar mass of sucrose = 342 g mol^{-1})

(Molar mass of glucose = 180 g mol^{-1})

56/1/3 7 [P.T.O.

23. टी.वी. में एक प्रोग्राम में ब्रेड तथा दूसरे बेकरी उत्पादों में पोटैशियम ब्रोमेट और पोटैशियम आयोडेट जैसे कार्सनोजेनिक (कैंसरकारी) रसायनों की उपस्थिति देखने के बाद, रितु, बारहवीं कक्षा की छात्रा, ने दूसरों को खाद्य-पदार्थों में इन कार्सनोजेन से होने वाले नुकसान के बारे में जागृत करने का निश्चय किया । वह स्कूल प्रधानाचार्य से मिली और उनसे कैन्टीन ठेकेदार को आदेश देंने का आग्रह किया कि वह विद्यार्थियों को सैन्डिवच, पिज्जा, बर्गर और दूसरे बेकरी उत्पाद न बेचें । प्रधानाचार्य ने तत्काल कदम उठाते हुए कैन्टीन ठेकेदार को बेकरी उत्पादों की जगह प्रोटीन एवं विटामिन से भरपूर खाना जैसे फल, सलाद, अंकुरित पदार्थ, रखने का आदेश दिया । इस निर्णय का सभी माता-पिता तथा विद्यार्थियों ने स्वागत किया ।

उपर्युक्त प्रकरण को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) रितु द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
- (ii) आमतौर से ब्रेड में कार्बोहाइड्रेट का कौन सा पॉलिसैकैराइड घटक होता है ?
- (iii) प्रोटीनों की द्वितीयक संरचना के दो प्रकार लिखिए ।
- (iv) जल विलेय विटामिन के दो उदाहरण दीजिए ।

After watching a programme on TV about the presence of carcinogens(cancer causing agents) Potassium bromate and Potassium iodate in bread and other bakery products, Ritu a class XII student decided to aware others about the adverse effects of these carcinogens in foods. She consulted the school principal and requested him to instruct canteen contractor to stop selling sandwiches, pizza, burgers and other bakery products to the students. Principal took an immediate action and instructed the canteen contractor to replace the bakery products with some proteins and vitamins rich food like fruits, salads, sprouts etc. The decision was welcomed by the parents and students.

4

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Ritu?
- (ii) Which polysaccharide component of carbohydrates is commonly present in bread?
- (iii) Write the two types of secondary structure of proteins.
- (iv) Give two examples of water soluble vitamins.
- 24. (अ) एक तत्त्व का परमाण्विक द्रव्यमान 93 g mol^{-1} और घनत्व 11.5 g cm^{-3} है । यदि एकक कोष्ठिका के कोर की लम्बाई 300 pm है, तो एकक कोष्ठिका के प्रकार की पहचान कीजिए । 3+2=5
 - (ब) अक्रिस्टलीय ठोस एवं क्रिस्टलीय ठोस के बीच दो अंतर लिखिए ।

अथवा

- (अ) ऐलुमिनियम के 8.1~g में कितनी एकक कोष्टिकाएँ होंगी यदि यह f.c.c. संरचना में क्रिस्टलीकृत होता है । (Al का परमाण्विक द्रव्यमान = $27~g~\text{mol}^{-1}$) 2+3=5
- (ब) कारण दीजिए :
 - (i) स्टाइकियोमीट्री दोष में, NaCl शाट्की दोष दिखाता है न कि फ्रेंकेल दोष ।
 - (ii) सिलिकन को फॉस्फोरस के साथ अपिमश्रित करने पर n-प्रकार का अर्धचालक प्राप्त होता है ।
 - (iii) फेरीचुंबकत्व पदार्थ, प्रतिलोह चुंबकत्व पदार्थों की तुलना में बेहतर चुंबकीय गुण दर्शाते हैं ।
- (a) An element has atomic mass 93 g mol⁻¹ and density 11.5 g cm⁻³. If the edge length of its unit cell is 300 pm, identify the type of unit cell.
- (b) Write any two differences between amorphous solids and crystalline solids.

OR

- (a) Calculate the number of unit cells in 8.1 g of aluminium if it crystallizes in a f.c.c. structure. (Atomic mass of $Al = 27 \text{ g mol}^{-1}$)
- (b) Give reasons:
 - (i) In stoichiometric defects, NaCl exhibits Schottky defect and not Frenkel defect.
 - (ii) Silicon on doping with Phosphorus forms n-type semiconductor.
 - (iii) Ferrimagnetic substances show better magnetism than antiferromagnetic substances.
- 25. (अ) निम्न अभिक्रियाओं के उत्पादों को लिखिए :

$$3 + 2 = 5$$

(i)
$$COOH \xrightarrow{COOH} \frac{(CH_3CO)_2O}{H^+}$$

(ii)
$$CH_3 - CH - O - CH_2 - CH_3 \xrightarrow{HI} ? + ?$$

(iii)
$$CH_3 - CH = CH - CH_2 - OH \xrightarrow{PCC}$$
?

- (ब) निम्नलिखित यौगिक युगलों में विभेद करने के लिए सरल रासायिनक परीक्षण दीजिए :
 - (i) ऐथेनॉल और फ़ीनॉल
 - (ii) प्रोपेनॉल और 2-मेथिलप्रोपेन-2-ऑल

अथवा

(अ) निम्नलिखित अभिक्रियाओं में प्रयुक्त अभिकर्मकों के सूत्र लिखिए :

2 + 2 + 1 = 5

(i) फ़ीनॉल का 2.4.6-ट्राइब्रोमोफ़ीनॉल में ब्रोमीनन

(ii) प्रोपीन का हाइड्रोबोरॉनन और ऑक्सीकरण के द्वारा प्रोपेनॉल का बनना

(ब) निम्नलिखित यौगिक समूहों को उनके सामने दर्शाए गुणधर्मों के बढ़ते क्रम में व्यवस्थित कीजिए :

- (i) p-नाइट्रोफ़ीनॉल, ऐथेनॉल, फीनॉल (अम्लीय स्वभाव)
- (ii) प्रोपेनॉल, प्रोपेन, प्रोपेनैल (क्वथनांक)
- (स) निम्नलिखित अभिक्रिया (घुमावदार तीर अंकन का उपयोग करते हए) की क्रियाविधि लिखिए :

$$CH_3 - CH_2 - \overset{+}{O}H_2 \xrightarrow{CH_3CH_2OH} CH_3 - CH_2 - \overset{+}{O} - CH_2 - CH_3 + H_2O$$

(a) Write the product(s) in the following reactions:

(i)
$$COOH \xrightarrow{COOH} \frac{(CH_3CO)_2O}{H^+}$$
?

(ii)
$$CH_3 - CH - O - CH_2 - CH_3 \xrightarrow{HI} ? + ?$$

(iii)
$$CH_3 - CH = CH - CH_2 - OH \xrightarrow{PCC}$$
?

- (b) Give simple chemical tests to distinguish between the following pairs of compounds:
 - (i) Ethanol and Phenol
 - (ii) Propanol and 2-methylpropan-2-ol

OR

- (a) Write the formula of reagents used in the following reactions:
 - (i) Bromination of phenol to 2,4,6-tribromophenol
 - (ii) Hydroboration of propene and then oxidation to propanol.
- (b) Arrange the following compound groups in the increasing order of their property indicated:
 - (i) p-nitrophenol, ethanol, phenol (acidic character)
 - (ii) Propanol, Propane, Propanal (boiling point)
- (c) Write the mechanism (using curved arrow notation) of the following reaction:

$$\operatorname{CH_3} - \operatorname{CH_2} - \operatorname{OH_2} \xrightarrow{} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{OH_2} - \operatorname{CH_3} + \operatorname{H_2O}$$

26. (अ) निम्न के कारण लिखिए :

3 + 2 = 5

- (i) संक्रमण धात्एँ अनेक संकुल यौगिकों की रचना करते हैं ।
- (ii) संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय है, जबिक उच्चतम ऑक्साइड उभयधर्मी या अम्लीय होता है ।
- (iii) Mn^{3+}/Mn^{2+} युग्म के लिए E° का मान Cr^{3+}/Cr^{2+} की तुलना में बहुत अधिक धनात्मक (+1.57~V) होता है ।
- (ब) लैन्थेनॉयड एवं ऐक्टिनॉयड के रसायन के बीच एक समानता और एक अंतर लिखिए ।

अथवा

- (अ) (i) संक्रमण धातुओं की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता p-ब्लॉक के तत्वों से किस प्रकार भिन्न हैं ?
 - (ii) Cu⁺ और Cu²⁺ ती तुलना में, कौन सा आयन जलीय विलयन में अस्थायी है और क्यों ?
 - (iii) $\operatorname{Cr_2O_7}^{2-}$ का नारंगी रंग क्षारीय माध्यम में पीले रंग में बदल जाता है । क्यों ? 3+2=5
- (ब) एक्टिनॉयड का रसायन लैन्थेनॉयड की तुलना में जटिल है । दो कारण दीजिए ।
- (a) Account for the following:
 - (i) Transition metals form large number of complex compounds.
 - (ii) The lowest oxide of transition metal is basic whereas the highest oxide is amphoteric or acidic.
 - (iii) E° value for the Mn^{3+}/Mn^{2+} couple is highly positive (+1.57 V) as compare to Cr^{3+}/Cr^{2+} .
- (b) Write one similarity and one difference between the chemistry of lanthanoid and actinoid elements.

OR

- (a) (i) How is the variability in oxidation states of transition metals different from that of the p-block elements?
 - (ii) Out of Cu⁺ and Cu²⁺, which ion is unstable in aqueous solution and why?
 - (iii) Orange colour of $\operatorname{Cr_2O_7}^{2-}$ ion changes to yellow when treated with an alkali. Why ?
- (b) Chemistry of actinoids is complicated as compared to lanthanoids. Give two reasons.

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

Set 56/1/3

Q.No	Value Points	Marks
1	i) No effect	1/2
	ii) Decreases	1/2
2	Both are surface phenomenon / both increase with increase in surface area	1
	(or any other correct similarity)	
3	MnO ₄ / KMnO ₄	1
4	BrCH ₂ (CH ₃)C=CH ₂	1
5	N,N-Dimethylethanamine	1
6	(i)	1
	$C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$ (ii)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
7.	(i)	1
	HO OH OH	
	(ii) F Xe F	1
8	 (i) If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass (ii) Extent of dissociation or association or ratio of the observed colligative property to calculated colligative property 	1
9	$\Lambda^{\circ}_{CH3COOH} = \lambda^{\circ}_{CH3COO-} + \lambda^{\circ}_{H+}$	1/2
	$= 40.9 + 349.6 = 390.5 \text{ S cm}^2/\text{mol}$	1/2
	Now, $\alpha = \Lambda_m / \Lambda_m^{\circ}$	1/2
	= 39.05 / 390.5 = 0.1	1/2
10	(i) $F_2 + 2CI^- \rightarrow 2F^- + CI_2$	1
	(ii) $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$	1
	OR	
10	(i) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$	1
	(ii) $PCl_5 \longrightarrow PCl_3 + Cl_2$	1

11	(i) Due to the resonance, the electron pair of nitrogen atom gets delocalised towards carbonyl group / resonating structures. (ii) Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron density on nitrogen decreases / resonating structures. (iii) Due to protonation of aniline / formation of anilinium ion	1 1 1
12	(i) Due to the decrease in bond dissociation enthalpy / due to	1
12	increase in atomic size from O to Te.	1
	(ii) Due to small size of fluoride ion / high charge density of fluoride	1
	ion / high charge size ratio of fluoride ion.	-
	(iii) Absence of d-orbitals.	
13	(i) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / detergents whose anionic part is involved in cleansing action.	1
	(ii) Limited spectrum antibiotics are effective against a single	
	organism or disease.	1
	(iii) Tranquilizers are class of chemicals used for treatment of stress or mild or severe mental diseases.	1
14	(i)	1
	н 	
	H ₂ C C=O	
	H ₂ C CH ₂ ·	
	$_{\rm H_2C}$ — $_{\rm CH_2}$ / $_{\rm NH_2(CH_2)_5}$ -COOH	
	(ii)	
	H ₂ N NH ₂ N NH ₂ NH ₂ + HCHO	1
	1110110	
	(iii)CF ₂ =CF ₂	1
15	(i) A: C ₆ H ₅ MgBr B: C ₆ H ₅ COOH C: C ₆ H ₅ COCl	½ × 3
		½ × 3
	(ii)A: CH ₃ CHO B: CH ₃ CH(OH)CH ₂ CHO C: CH ₃ CH=CHCHO	
	OR	
15	(i) C_6H_5COOH soci ₂ C_6H_5COCI H_2 , Pd – BaSO ₄ C_6H_5CHO	1
	(ii) $C_6H_5C_2H_5 \xrightarrow{\kappa_2Cr_2O_7/H^+} C_6H_5COOH$	1
	(iii)CH ₃ COCH ₃ NaBH ₄ CH ₃ CH(OH)CH ₃ conc.H ₂ SO ₄ CH ₃ CH=CH ₂	1
		1
16	(or any other correct method) (i) The impurities are more soluble in the melt than in the solid state of the	1
16	metal.	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	(ii) PbS	
	(iii) Impurities like SiO ₂ etc are removed by using NaOH solution and pure	1
	alumina is obtained .	_
17	(i) 1- Bromopentane	1
	(ii) 2-Bromopentane	1
	(iii) 2-Bromo-2-methylbutane	1
18	(a) $k = \frac{2.303}{t} log \frac{[A]o}{[A]}$	1/2

	$= \frac{2.303}{300} \log \frac{1.6 \times 10^{-2}}{0.8 \times 10^{-2}}$	
	$-\frac{1}{300}$ $\frac{108}{0.8 \times 10^{-2}}$	
	$= \frac{2.303}{300} \log 2 = 2.31 \times 10^{-3} \text{ s}^{-1}$	1/2
	At 600 s, $k = \frac{2.303}{t} \log \frac{[A]o}{[A]}$	1/2
	$= \frac{2.303}{600} \log \frac{1.6 \times 10^{-2}}{0.4 \times 10^{-2}}$	
	$= 2.31 \times 10^{-3} \text{ s}^{-1}$	
	k is constant when using first order equation therefore it follows first order kinetics. or	1/2
	In equal time interval, half of the reactant gets converted into product and the rate of reaction is independent of concentration of reactant, so it is a first order reaction.	
	(b) $t_{1/2} = 0.693/k$ = 0.693/2.31x10 ⁻³	
	= 300 s (If student writes directly that half life is 300 s , award full marks)	1
19.	(i) Multimolecular colloid: a large number of atoms or smaller molecules of	1
	a substance aggregate together to form species having size in the colloidal	
	range.	
	Macromolecular: Large sized molecules whose particle size lies in the colloidal range.	
	(ii) Sol are solid dispersed in liquid while gel are liquid dispersed in solid	
	(iii) In O/W emulsion, water acts as dispersion medium while in W/O oil	1
	acts as dispersion medium	1
20	(i)Optical isomerism	1
	(ii)d ² sp ³ , diamagnetic	1/2 + 1/2
24	(iii)Triamminetrichloridochromium(III)	1
21	(i)m = ZIt $= 108 \times 2 \times 15 \times 60$	1/2
	= <u>108x2x15 x60</u> 1×96500	1
	= 2.01 g (or any other correct	1/2
	method)	/2
	(ii) Cells that converts the energy of combustion of fuels directly into	1
	electrical energy.	_
22	$\Delta T_f = K_f m$	1/2
	Here , $m = w_2 x 1000 / M_2 X M_1$	
	$273.15-269.15 = K_f \times 10 \times 1000 / 342 \times 90$	1
	$K_f = 12.3 \text{ K kg/mol}$	1/2
	$\Delta T_f = K_f m$	
	= 12.3 x 10 x1000/ 180x90	
	= 7.6 K	1
22	$T_f = 273.15 - 7.6 = 265.55 \text{ K}$ (or any other correct method) (i)concerned, caring, socially alert, leadership (or any other 2 values)	1/ + 1/
23	(ii)starch	½ + ½ 1
	(iii)α -Helix and β-pleated sheets	1 1/2 + 1/2
	(iv)Vitamin B / B_1 / B_2 / B_6 / C (any two)	½ + ½ ½ + ½
		/2 1 /2

2.4	(a) $\rho = (zxM)/a^3x N_a$		1/	
24	(a) $\rho = (2XIVI)/a X IN_a$		1/2	
	$11.5 = z \times 93 / [(300 \times 10^{-10})^3 \times 6.02 \times 10^{23}]$		1	
	Z = 2.0		1/2	
	Body centred cubic(bcc)		1	
	Body controd cable(boo)			
	(b)			
		alline solids	1+1	
		range order		
	Isotropic Aniso	<u> </u>		
		or any other correct difference)		
	OR			
24	a) n= given mass / molar mass			
	= 8.1 / 27 mol		1/2	
	Number of atoms= $\frac{8.1}{27}$ x 6.022x10 ²³		1/2	
	Number of atoms in one unit cell= 4 (fcc)		,-	
			1/2	
	Number of unit cells = $\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$		1/2	
	$= 4.5 \times 10^{22}$		/2	
	Or 27% of Al contains 6.022v40 ²³ stams		1/2	
	27g of Al contains= 6.022x10 ²³ atoms 8.1g of Al contains =(6.022x10 ²³ / 27) x 8.1			
	No of unit cells = total no of atoms /4		1/2	
			4.6	
	$=\left[\frac{8.1}{27} \times 6.022 \times 10^{23}\right] / 4$		1/2	
	$=4.5 \times 10^{22}$		1/2	
	11.55	. ,,		
	b) i) Due to comparable size of cation and anion / large size of sodium ion ii) P has 5 valence e, an extra electron results in the formation of n-type			
		its in the formation of n-type	1	
	semiconductor. iii) In ferrimagnetism ,domains / magnetic mo	monte are aligned in apposite		
	direction in unequal numbers while in antifer			
	in opposite direction in equal numbers so the		1	
	completely ,net magnetism is zero / diagram			
25	СООН			
	1		1	
	OCOCH ₃		_	
	· []			
	a) i)			
	ii) (CH ₃) ₂ CHOH and CH ₃ CH ₂ I		1	
	iii) CH ₃ CH=CHCHO		1	
	, -	ade phonol divos violet	1	
	b) i) Add neutral FeCl ₃ to both the compou	ius, prierioi gives violet	T	
	complex. ii) Add anhy ZnCl ₂ and conc. HCl to both t	he compounds	1	
	2-methyl propan-2-ol gives turbidity immedi	•	1	
	OR	atery. (or any other correct test)		
25			1	
25	a) i) Aq. Br ₂			
	ii) B_2H_6 , H_2O_2 and OH^2		1	
	b) i) ethanol < phenol < p-nitrophenol		1	
	ii) propane < propanal < propanol		1	
	c)			
	CHCH = 0: + $CH = CH = 0$			
	$CH_3CH_2-\overset{\circ}{O}: + CH_3-CH_2-\overset{\circ}{O}: + CH_3-\overset{\circ}{O}: + CH_3-\overset$		1	
	н 🔾			

26	a) (i) Due to small size and high ionic charge / availability of d orbitals.	1
	(ii) Higher is the oxidation state higher is the acidic character / as the	1
	oxidation state of a metal increases, ionic character decreases	
	(iii) Because Mn ²⁺ has d ⁵ as a stable configuration whereas Cr ³⁺ is more	1
	stable due to stable t^3_{2g}	
	b) Similarity-both are stable in +3 oxidation state/ both show	
	contraction/ irregular electronic configuration (or any other suitable	1
	similarity)	
	Difference- actinoids are radioactive and lanthanoids are not / actinoids	1
	show wide range of oxidation states but lanthanoids don't (or any other	
	correct difference)	
	OR	
26	a) i) In p block elements the difference in oxidation state is 2 and in	1
	transition metals the difference is 1	
	ii) Cu ⁺ , due to disproportionation reaction / low hydration enthalpy	1/2 + 1/2
	iii) Due to formation of chromate ion / $\text{CrO}_4^{2^-}$ ion, which is yellow in	1
	colour	
	b) Actinoids are radioactive, actinoids show wide range of oxidation	
	states.	1+1

1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat	20	Mr. Mukesh Kumar Kaushik	
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	