Series OSR/2

कोड नं. 56/2/2 Code No.

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **30** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न-संख्या 9 से 18 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न-संख्या 19 से 27 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न-संख्या 28 से 30 तक दीर्घ-उत्तरीय प्रश्न हैं। प्रत्येक प्रश्न के लिए 5 अंक हैं।
- (vi) आवश्यकतानुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित **नहीं** है ।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
- (iii) Questions number **9** to **18** are short-answer questions and carry **2** marks each.
- (iv) Questions number 19 to 27 are also short-answer questions and carry 3 marks each.
- (v) Questions number **28** to **30** are long-answer questions and carry **5** marks each.
- (vi) Use Log Tables, if necessary. Use of calculators is **not** allowed.
- 1. धातुओं के ज़ोन परिशोधन की विधि का आधारमूल सिद्धान्त क्या है ? 1
 On what principle is the method of zone refining of metals based ?
- 2. उस तापक्रम का नाम लिखिए जिससे ऊपर मिसेल (micelles) बनते हैं।

 Name the temperature above which the formation of micelles takes place.

56/2/2

निम्न को इनके बढ़ते हए क्षारीय क्रम में व्यवस्थित कीजिए : 3.

NH₃, PH₃, AsH₃, SbH₃, BiH₃

Arrange the following in the increasing order of their basic character:

 NH_3 , PH_3 , AsH_3 , SbH_3 , BiH_3

निम्न संकर किस प्रकार की समावयवता दिखाता है : 4.

1

1

 $[Co(NH_3)_5SO_4]Cl$

What type of isomerism is exhibited by the following complex:

 $[Co(NH_3)_5SO_4]Cl$

f.c.c. एकक सेल के किनारे की लम्बाई(a) और परमाण् त्रिज्या(r) का आपसी सम्बन्ध 5. लिखिए।

Express the relationship between atomic radius(r) and the edge length (a) of the f.c.c. unit cell.

इन दोनों में से कौन-सा अधिक क्षारीय है और क्यों ? 6.

1

1

CH₃NH₂ अथवा NH₃

Which of the two is more basic and why?

CH₃NH₉ or NH₃

उस यौगिक का नाम लिखिए जो बहलकीकरण पर निओप्रीन देता है। 7. Name the compound which on polymerisation gives neoprene.

1

1

निम्नलिखित यौगिक का आई.यू.पी.ए.सी. (IUPAC) नाम लिखिए :

Write the IUPAC name of the following compound:

$$\bigcirc$$
CHO

8.

निम्नलिखित के कार्य लिखिए: 9. 2 निकैल के शोधन में CO का (i) ऐलुमिनियम के विद्युत्-धातुकर्म में ग्रेफ़ाइट छड का (ii) Write the role of the following: (i) CO in the purification of nickel (ii) Graphite rod in the electrometallurgy of aluminium निम्न समीकरणों को परा कीजिए : 10. 2 $2 \text{ MnO}_{4}^{-} + 5 \text{ NO}_{2}^{-} + 6 \text{ H}^{+} \rightarrow$ (i) $Cr_2O_7^{2-} + 14 H^+ + 6 e^- \rightarrow$ (ii) Complete the following equations: $2 \text{ MnO}_4^- + 5 \text{ NO}_2^- + 6 \text{ H}^+ \rightarrow$ (i) $\text{Cr}_{2}\text{O}_{7}^{2-} + 14 \text{ H}^{+} + 6 \text{ e}^{-} \rightarrow$ (ii) संकर [Ni(CN)4] 2- की संकरण अवस्था, आकृति और IUPAC नाम लिखिए। 11. (Ni का परमाणु क्रमांक = 28) 2 Write the state of hybridization, shape and IUPAC name of the complex $[Ni(CN)_4]^{2-}$. (Atomic no. of Ni = 28) रासायनिक समीकरण लिखिए जब 12. 2 मेथिल क्लोराइड की AgNO2 से अभिक्रिया की जाती है। (i) निर्जल $AlCl_3$ की उपस्थिति में ब्रोमोबेन्ज़ीन की CH_3Cl से अभिक्रिया की जाती है । (ii) Write chemical equations when (i) methyl chloride is treated with AgNO₂. bromobenzene is treated with CH₃Cl in the presence of anhydrous (ii) $AlCl_3$.

- 13. निम्न अभिक्रियाओं में प्रयुक्त अभिकर्मकों के नाम लिखिए :
 - (i) फ़ीनॉल की नाइट्रेशन द्वारा 2,4,6-ट्राईनाइट्रोफ़ीनॉल बनाना
 - (ii) ब्यूटेनैल से ब्यूटेनॉल बनाना
 - (iii) ऐनिसोल का फ्रीडेल क्राफ़्ट्स ऐसीटिलीकरण
 - (iv) प्राथमिक ऐल्कोहॉल के ऑक्सीकरण से ऐल्डिहाइड बनाना

Name the reagents used in the following reactions:

- (i) Nitration of phenol to 2,4,6-trinitrophenol
- (ii) Butanal to Butanol
- (iii) Friedel Crafts acetylation of anisole
- (iv) Oxidation of primary alcohol to aldehyde
- 14. (a) निम्न युग्मों से किस ऐल्किल हेलाइड की आप $S_N 2$ क्रियाविधि द्वारा अधिक तीव्रता से अभिक्रिया करने की आशा करेंगे और क्यों ?

$$\begin{array}{ccc} CH_3-CH_2-CH-CH_3 & & CH_3-CH_2-CH_2-CH_2-Br \\ & | & \\ Br & & \end{array}$$

- (b) $S_N 1$ अभिक्रियाओं में रेसिमीकरण हो जाता है । क्यों ?
- (a) Which alkyl halide from the following pairs would you expect to react more rapidly by an S_N2 mechanism and why?

$$CH_3-CH_2-CH-CH_3 \qquad CH_3-CH_2-CH_2-Br$$

- (b) Racemisation occurs in S_N1 reactions. Why?
- 15. निम्न अभिक्रिया की क्रियाविधि लिखिए:

$$CH_3CH_2OH \xrightarrow{\quad HBr \quad} CH_3CH_2Br + H_2O$$

Write the mechanism of the following reaction:

$$CH_3CH_2OH \xrightarrow{HBr} CH_3CH_2Br + H_2O$$

2

2

56/2/2

16. $Ni(NO_3)_2$ के एक विलयन का प्लैटिनम के इलेक्ट्रोडों के बीच 5.0 ऐम्पीयर विद्युत् धारा से 20 मिनट तक वैद्युत अपघटन किया गया । कैथोड पर निकैल का कितना द्रव्यमान निक्षेपित होगा ?

(दिया गया है : निकैल का परमाणु द्रव्यमान = 58.7 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$)

2

2

2

2

A solution of $Ni(NO_3)_2$ is electrolysed between platinum electrodes using a current of 5.0 ampere for 20 minutes. What mass of nickel will be deposited at the cathode?

(Given : At. Mass of Ni = 58.7 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$)

- 17. अभिक्रिया की अर्ध आयु की परिभाषा लिखिए । निम्न के अर्ध आयु के लिये व्यंजक लिखिए :
 - (i) शून्य कोटि की अभिक्रिया
 - (ii) प्रथम कोटि की अभिक्रिया

Define half-life of a reaction. Write the expression of half-life for

- (i) zero order reaction and
- (ii) first order reaction.
- 18. सल्फ़र के दो अति महत्त्वपूर्ण अपररूपों के नाम लिखिए । इन दोनों में से कौन-सा कक्ष ताप पर स्थायी होता है ? क्या होता है जब स्थायी रूप को 370 K से ऊपर गरम किया जाता है ?

अथवा

- (i) सम्पर्क विधि से $m H_2SO_4$ की प्राप्ति को अधिकतम बनाने के प्रतिबन्ध लिखिए ।
- (ii) जल में ${
 m H_2SO_4}$ के लिए ${
 m K_{a_2}} << {
 m K_{a_1}}$ क्यों है ?

Name the two most important allotropes of sulphur. Which one of the two is stable at room temperature? What happens when the stable form is heated above 370 K?

OR

- (i) Write the conditions to maximize the yield of H_2SO_4 by contact process.
- (ii) Why is $K_{a_2} \ll K_{a_1}$ for H_2SO_4 in water?

56/2/2

19. प्लास्टिक के थैलों पर प्रतिबन्ध लग जाने के उपरान्त, एक स्कूल के छात्रों ने निर्णय लिया कि वह लोगों को वातावरण और यमुना नदी पर प्लास्टिक के थैलों के हानिकारक प्रभावों से सूचित करेंगे । बात को अधिक प्रभावी बनाने के लिए, उन्होंने दूसरे स्कूलों के साथ मिलकर एक रैली रची और सिब्ज़ियाँ बेचने वालों, दुकानदारों और डिपार्टमेन्टल स्टोरों में काग़ज़ के थैलों बाँटे । सभी छात्रों ने प्रण किया कि वे यमुना नदी को बचाने के लिए भविष्य में पॉलीथीन के थैलों का प्रयोग नहीं करेंगे ।

3

उपर्युक्त लेखांश को पढ़कर निम्न प्रश्नों के उत्तर दीजिए :

- (i) छात्रों ने किन मूल्यों को दर्शाया है ?
- (ii) जैव-निम्नीकरणीय बहलक क्या होते हैं ? एक उदाहरण दीजिए ।
- (iii) क्या पॉलीथीन एक सम (होमो) बहुलक है अथवा सह (co-) बहुलक है ?

After the ban on plastic bags, students of one school decided to create awareness among the people about the harmful effects of plastic bags on the environment and the Yamuna river. To make it more impactful, they organized a rally by joining hands with other schools and distributed paper bags to vegetable vendors, shopkeepers and departmental stores. All students pledged not to use polythene bags in future to save the Yamuna river.

After reading the above passage, answer the following questions:

- (i) What values are shown by the students?
- (ii) What are biodegradable polymers? Give one example.
- (iii) Is polythene a homopolymer or copolymer?

56/2/2 7 P.T.O.

20.	निम्न प	पदों की परिभाषाएँ लिखिए :	3
	(a)	पॉलीसैकेराइड	
	(b)	ऐमीनो अम्ल	
	(c)	एन्ज़ाइम	
	Defir	ne the following terms :	
	(a)	Polysaccharides	
	(b)	Amino acids	
	(c)	Enzymes	
21.	(i)	ऐन्टीहिस्टामीन की एक उदाहरण सहित परिभाषा लिखिए।	
	(ii)	निम्न औषधियों में से कौन-सी प्रतिजैविक है :	
		मॉर्फीन, इक्वानिल, क्लोरऐम्फ़ैनिकोल, ऐस्पिरिन ।	
	(iii)	ऐस्पार्टेम का उपयोग ठंडे भोजन और पेय पदार्थों तक सीमित क्यों होता है ?	3
	(i)	Define Antihistamine with an example.	
	(ii)	Which one of the following drugs is an antibiotic:	
		Morphine, Equanil, Chloramphenicol, Aspirin.	
	(iii)	Why is use of aspartame limited to cold food and drink?	
22.	निम्न	अभिक्रियाओं में A, B और C की संरचनाएँ बताइए :	3
	(i)	$CH_{3}Br \xrightarrow{KCN} A \xrightarrow{LiAlH_{4}} B \xrightarrow{HNO_{2}} C$	
	(ii)	$\text{CH}_{3}\text{COOH} \xrightarrow{ \text{NH}_{3} } \text{A} \xrightarrow{ \text{Br}_{2} + \text{KOH} } \text{B} \xrightarrow{ \text{CHCl}_{3} + \text{NaOH} } \text{C}$	
	Give	the structures of A, B and C in the following reactions:	

(i)
$$CH_3Br \xrightarrow{KCN} A \xrightarrow{LiAlH_4} B \xrightarrow{HNO_2} C$$

$$(ii) \qquad CH_3COOH \xrightarrow{\quad NH_3\quad} A \xrightarrow{\quad Br_2 + KOH\quad} B \xrightarrow{\quad CHCl_3 + NaOH\quad} C$$

- 23. (i) KCl किस प्रकार का रससमीकरणिमतीय दोष दिखाता है और क्यों ?
 - (ii) सिलिकॉन को As से डोपित करने पर किस प्रकार का अर्धचालक बनता है ?
 - (iii) निम्न में से कौन-सा आण्विक ठोस का उदाहरण है : CO_2 अथवा SiO_2
 - (iv) इनमें से कौन-सा अधिक अच्छे चुम्बक बनाएगा, फेरोचुम्बकीय पदार्थ अथवा फेरीचुम्बकीय पदार्थ ?
 - (i) What type of stoichiometric defect is shown by KCl and why?
 - (ii) What type of semiconductor is formed when silicon is doped with As?
 - (iii) Which one of the following is an example of molecular solid : ${\rm CO_2}$ or ${\rm SiO_2}$
 - (iv) What type of substances would make better magnets, ferromagnetic or ferrimagnetic?
- **24.** (i) साधारण सेल की तुलना में $H_2 O_2$ ईंधन सेल के दो लाभ लिखिए।
 - (ii) नीचे दी गई सेल अभिक्रिया के लिये साम्य स्थिरांक $(K_c)\,10$ है । इसके लिये $E_{\mbox{\scriptsize \`the}}^{\circ}$ परिकलित कीजिए ।

$$A(s) + B^{2+}(aq) \longrightarrow A^{2+}(aq) + B(s)$$

(i) Write two advantages of $H_2 - O_2$ fuel cell over ordinary cell.

(ii) Equilibrium constant (K_c) for the given cell reaction is 10. Calculate $E_{\rm cell}^o$.

$$A(s) + B^{2+}(aq) \longrightarrow A^{2+}(aq) + B(s)$$

3

25. स्थिर आयतन अवस्था में SO_2Cl_2 के प्रथम कोटि के ऊष्मीय अपघटन में निम्न आंकड़े प्राप्त हुए थे :

$$SO_2Cl_2(g) {\:\longrightarrow\:} SO_2(g) + Cl_2(g)$$

प्रयोग	समय/s ⁻¹	सकल दाब/atm
1	0	0.4
2	100	0.7

वेग स्थिरांक परिकलित कीजिए।

(दिया गया है : $\log 4 = 0.6021$, $\log 2 = 0.3010$)

The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume :

$$SO_2Cl_2(g) {\:\longrightarrow\:} SO_2(g) + Cl_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.4
2	100	0.7

Calculate the rate constant.

(Given : $\log 4 = 0.6021$, $\log 2 = 0.3010$)

- 26. (a) ठोसों पर गैसों के अधिशोषण के लिए फ्रॉयन्डलिक अधिशोषण समतापी (isotherm) के लिए एक समीकरण के रूप में व्यंजक लिखिए।
 - (b) मक्खन के परिक्षिप्त प्रावस्था और परिक्षेप माध्यम क्या हैं ?
 - (c) समुद्र और नदी के मिलने के स्थान पर डेल्टा बनता है। क्यों ?

(a) Write the expression for the Freundlich adsorption isotherm for the adsorption of gases on solids, in the form of an equation.

(b) What are the dispersed phase and dispersion medium of butter?

(c) A delta is formed at the meeting place of sea and river water. Why?

3

- 27. (a) लैन्थेनॉयड कौन-कौन सी विभिन्न उपचायी अवस्थाएँ दिखाते हैं ?
 - (b) संक्रमण तत्त्वों की दो विशेषताएँ लिखिए ।
 - (c) 3d-ब्लॉक के तत्त्वों में से किन-किन को संक्रमण तत्त्व नहीं माना जा सकता है और क्यों ?

3

3

अथवा

निम्न के लिए उपयुक्त कारण लिखिए:

- (a) अपनी +3 ऑक्सीकरण अवस्था को प्राप्त करने के लिए Fe^{2+} यौगिकों की तुलना में Mn^{2+} यौगिक अधिक स्थायी होते हैं।
- (b) Sc (Z=21) से Zn (Z=30) तक के 3d सीरीज़ के तत्त्वों में से Zn की परमाणुकरण की ऐन्थैल्पी सबसे कम होती है ।
- m (c) जलीय विलयन में $m Sc^{3+}$ रंगहीन होता है जबिक $m Ti^{3+}$ रंगीन होता है ।
- (a) What are the different oxidation states exhibited by the lanthanoids?
- (b) Write two characteristics of the transition elements.
- (c) Which of the 3d-block elements may not be regarded as the transition elements and why?

OR

Assign suitable reasons for the following:

- (a) The Mn^{2+} compounds are more stable than Fe^{2+} towards oxidation to their +3 state.
- (b) In the 3d series from Sc (Z = 21) to Zn (Z = 30), the enthalpy of atomization of Zn is the lowest.
- (c) Sc^{3+} is colourless in aqueous solution whereas Ti^{3+} is coloured.

56/2/2 11 P.T.O.

28.	(a)	ऐथेनैत	त के निम्न अभिकारकों के साथ अभिक्रिया करने पर बने उत्पादों को लिखिए :	3
		(i)	$ m CH_3MgBr$ से और फिर $ m H_3O^+$ से	
		(ii)	Zn-Hg/सान्द्र HCl से	
		(iii)	तनु NaOH की उपस्थिति में $ m C_6H_5CHO$ से	
	(b)	निम्न	यौगिक युग्मों में परस्पर भेद करने के लिए सरल रासायनिक परीक्षण दीजिए :	2
		(i)	बेन्ज़ोइक अम्ल और एथिल बेन्ज़ोएट	
		(ii)	प्रोपेनैल और ब्यूटेन-2-ओन	
			अथवा	
	(a)	निम्न	के कारण लिखिए :	2
		(i)	$ m HCN$ के साथ अभिक्रिया करने में $ m CH_3COCH_3$ से $ m CH_3CHO$ अधिक अभिक्रियाशील होता है।	
		(ii)	सेमीकार्बेज़ाइड $(\mathrm{H_2NNHCONH_2})$ में दो $-\mathrm{NH_2}$ ग्रुप होते हैं । फिर भी सेमीकार्बाज़ोन बनाने में केवल एक $-\mathrm{NH_2}$ ग्रुप क्रियाकारी होता है ।	
	(b)	निम्न	नामधारी अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए :	3
		(i)	रोज़ेनमुन्ड अभिक्रिया	
		(ii)	हेल-वोलार्ड-ज़ेलिन्स्की अभिक्रिया	
		(iii)	कैनीज़ारो अभिक्रिया	
	(a)		te the products formed when ethanal reacts with the following tents:	
		(i)	$\mathrm{CH_{3}MgBr}$ and then $\mathrm{H_{3}O^{+}}$	
		(ii)	Zn-Hg/conc. HCl	
		(iii)	${ m C_6H_5CHO}$ in the presence of dilute NaOH	
	(b)		e simple chemical tests to distinguish between the following s of compounds :	
		(i)	Benzoic acid and Ethyl benzoate	
		(ii)	Propanal and Butan-2-one	
			OB	

Account for the following: (a) CH₃CHO is more reactive than CH₃COCH₃ towards reaction (i) with HCN. $-NH_{2}$ groups semicarbazide (ii) There are two in (H₂NNHCONH₂). However, only one is involved in the formation of semicarbazone. (b) Write the chemical equation to illustrate each of the following name reactions: (i) Rosenmund reduction Hell-Volhard-Zelinsky reaction (ii) Cannizzaro reaction (iii) वाष्पशील अवयवों वाले विलयन के लिए राउल्ट नियम लिखिए । सभी सान्द्रणों और (a) तापक्रमों पर राउल्ट नियम अनुसार रहने वाले विलयन का नाम लिखिए । 2 $200~{
m g}$ जल में $10~{
m g}~{
m CaCl}_2$ घोलने से प्राप्त हुए विलयन के लिए क्वथनांक उन्नयन (b) को परिकलित कीजिए । (जल के लिए $K_{\rm b} = 0.512~{
m K~kg~mol}^{-1}$, $CaCl_2$ का मोलर द्रव्यमान = 111 g mol⁻¹) 3 अथवा निम्न पदों की परिभाषाएँ लिखिए: (a) 3 स्थिरक्वाथी (ऐज़ियोटोप) (i) परासरणी (ओसमॉटिक) दाब (ii) अण्संख्य (कोलिगेटिव) गुणधर्म (iii)

29.

(b)

का घनत्व 1.02 g ml^{-1} हो । $(\text{H}_2\text{SO}_4$ का मोलर द्रव्यमान = $98 \text{ g mol}^{-1})$

9.8% (w/w) H₂SO₄ के विलयन की मोलरता परिकलित कीजिए यदि इस विलयन

(a) State Raoult's law for a solution containing volatile components. Name the solution which follows Raoult's law at all concentrations and temperatures. (b) Calculate the boiling point elevation for a solution prepared by adding 10 g of CaCl₂ to 200 g of water. (K_b for water = $0.512 \text{ K kg mol}^{-1}$, Molar mass of $CaCl_2 = 111 \text{ g mol}^{-1}$) OR (a) Define the following terms: (i) Azeotrope (ii) Osmotic pressure Colligative properties (iii) (b) Calculate the molarity of 9.8% (w/w) solution of H₂SO₄ if the density of the solution is 1.02 g ml^{-1} . (Molar mass of $H_2SO_4 = 98 \text{ g mol}^{-1}$) निम्न के कारण बताइए : (a) 3 + 5 अवस्था में Bi प्रबल उपचायक होता है। (i) PCl₅ तो जाना जाता है परन्तु NCl₅ नहीं। (ii) (iii) लौह HCl में घुलकर FeCl2 बनाता है, FeCl3 नहीं। निम्न की संरचनाएँ बनाइए : (b) 2 $XeOF_4$ (i) (ii) HClO₄ अथवा निम्न की संरचनाएँ बनाइए : (a) 2 (i) $H_2S_2O_8$

56/2/2 14

लाल P_4

(ii)

30.

- (i) वाष्प अवस्था में गन्धक (सल्फर) अनुचुम्बकत्व प्रदर्शित करता है।
- (ii) ज़ीनॉन से भिन्न, हीलियम का कोई स्पष्ट रासायनिक यौगिक ज्ञात नहीं है।
- (iii) H_3PO_3 से H_3PO_2 एक अधिक प्रबल अपचायक है ।
- (a) Account for the following:
 - (i) Bi is a strong oxidizing agent in the + 5 state.
 - (ii) PCl₅ is known but NCl₅ is not known.
 - (iii) Iron dissolves in HCl to form FeCl₂ and not FeCl₃.
- (b) Draw the structures of the following:
 - (i) XeOF₄
 - (ii) HClO₄

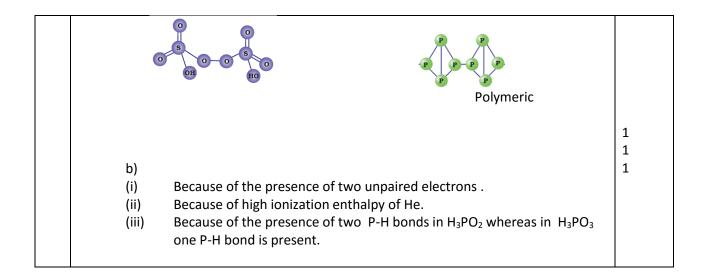
OR

- (a) Draw the structures of the following:
 - (i) $H_2S_2O_8$
 - (ii) Red P₄
- (b) Account for the following:
 - (i) Sulphur in vapour state exhibits paramagnetism.
 - (ii) Unlike xenon, no distinct chemical compound of helium is known.
 - (iii) H₃PO₂ is a stronger reducing agent than H₃PO₃.

MARKING SCHEME

Chemistry – 2014

FOREIGN – SET (56/2/2)


4	Tokeron Street Services of the Service of the servi	T.
1	Impurities are more soluble in the melt than the solid state of the metal.	1
2	Kraft temperature	1
3	$BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$	1
4	Ionization isomersion	1
5	$r = \frac{a}{2\sqrt{2}}$	1
6	$CH_3 - NH_2$; because of increase in electron density on N by +I effect of CH_3 group	1/2 + 1/2
7	Chloroprene	1
8	2 – hydroxybenzaldehyde	1
9	(i) CO reacts with Ni to form volatile compound [Ni (CO) ₄] which on further heating at	1
	higher temperature gives pure Ni	
	(ii) Graphite acts as anode and prevent the liberation of O ₂ by forming CO ₂ gas and CO	1
	gas	
10	(i) $2MnO_4^- + 5NO_2^- + 6H^+ \rightarrow 2Mn^{2+} + 5NO_3^- + 3H_2O$	1+1
	(ii) $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	
11	dsp² , square planar	1/2+1/2
	Tetracyanonickelate (II)	1
12	(i)CH ₃ Cl + AgNO ₂ → CH ₃ NO ₂ + AgCl	1
	(ii)	
	Cl Cl O	
	+ H.C-C-Cl Anhyd. AlCl ₃ + CH ₃ +	1
	+ H ₃ C-C-C1 (13) + H ₃ C-C-C1	
	OCH ₃	
- 10	(1)	1/ 1 2
13	(i) Conc.HNO ₃	½x4=2
	(ii) LiAlH ₄ or NaBH ₄ OR H ₂ / Ni	
	(iii) R COCI/anhyd AlCI ₃	
1.4	(iv) CrO ₃	1/ - 1/
14	a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br	1/2+1/2
	Because it is a primary alkyl halide	
	b) Because carbocation formed in $S_N 1$ reaction is sp^2 hybridized and planar.	1
15	$HBr \rightarrow H^+ + Br^-$	
	ч	
	$CH_3 - CH_2 - \bigcirc -H + H^{\dagger} \longrightarrow CH_3 - CH_2 - \bigcirc -H$	1/2

	Н	1/2
	$CH_3 - CH_2 - O - H \longrightarrow CH_3 - CH_2 + H_2O$	
	$CH_3 - CH_2 - O - H \longrightarrow CH_3 - CH_2 + H_2O$	
	+ B	$\begin{vmatrix} 1 \end{vmatrix}$
	CH_3 - CH_2 Br CH_3 - CH_2 - Br	1
	Or	
	$ \begin{array}{ccc} & & & & & & & & & & & & \\ Br & + & CH_2 - OH_2^+ & \longrightarrow Br - CH_2 + & H_2O \\ & & & & & & & & \\ R & & & & & & & \\ & & & & & & & \\ & & & & $	
	R (where P = CH ₂)	
	(where K = -CH3)	
16	m= z t	
		1/2
	$m = \frac{\text{atomic mass}}{\text{n x F}} = x \mid x t$ $m = \frac{58.7 g mol^{-1}}{2 x 96500 C mol^{-1}} x 5 A x 1200 s$	1/2
	m=1.825 g (or any other suitable method)	1
17	Half-life of a reaction is the time in which the concentration of a reactant is reduced to	1
	half of its initial concentration. (i) (ii)	
	f=1	1/2+1/2
	$t_{1/2} = \frac{[R]_0}{2k} \qquad \qquad t_{1/2} = \frac{0.693}{k}$	
18	Rhombic and Monoclinic	1
	Rhombic Sulphur Rhombic sulphur changes to monoclinic sulphur	½ ½
	OR	72
18	a) High pressure and low temperature	1
	 b) Because ionization of HSO⁻₄ is difficult / removal of proton from negatively charged HSO⁻₄ is difficult. 	1
19	(i) Concern towards environment / caring / socially aware / team work. (atleast	1
	two values)	
	(ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV	1
	, Nylon -2-nylon- 6/ any natural polymer	
	(iii) Homo polymer	1
20	(i) polysaccharides- are carbohydrates which yield a large number of mono saccharide	
20	units on hydrolysis.	1
	(ii) Amino Acids- are the compounds containing Amino and carboxyl groups.	1
	(iii) Enzymes are the biocatalysts which increase the rate of metabolism / chemical reactions in living organism.	1
21	(i) The drugs which are used to prevent the interaction of histamine with the	1
	receptors present in the stomach wall. Eg. Cimetidine / Ranitidine /	

	Dimetapp (or any other)		
	(ii) Chloramphenicol		1
	(iii) Because it is unstable at cooking temperature		1
22	(i) $A = CH_3CN$ $B = CH_3CH_2NH_2$ $C = CH_3CH_2C$)H	1/2+1/2+1/2
	(ii) $A = CH_3 CONH_2$ $B = CH_3NH_2$ $C = CH_3NC$		1/2+1/2+1/2
23	(i) Schottky defect, due to similar size of K ⁺ and Cl ⁻ ion		1/2 + 1/2
	(ii) n-type		1
	(iii) CO ₂		1/2
	(iv) Ferromagnetic		1/2
24	a)		
	(i) The fuel cell runs continuously as long as the reactangement	ts are supplied	
	(ii) Highly efficient		1/2
	(iii) Pollution free		1/2
	(any two)		
	b) $\log Kc = \frac{nE^0 \text{cell}}{0.059}$		
	0.059		1/2
	2xE ⁰ cell		
	$\log Kc = \frac{2xE^{0}cell}{0.059}$		
	0		1/2
	$\log 10 = \frac{2xE^{0}cell}{0.059}$ [log 10 = 2]	1]	
	$E_{\text{cell}}^0 = \frac{0.059}{2} = 0.0295 \text{ V}$		
	E cell - 2 - 0.0293 V		1
25	CO CI	Cl	1
25	$SO_2 Cl_2 \rightarrow SO_2 +$	Cl_2	
	At $t = 0s$ 0.4 atm 0 atm	0 atm	
	At $t = 100s (0.4 - x)$ atm	x atm	
	Pt = 0.4 - x + x + x		
	Pt = 0.4 + x		
	0.7 = 0.4 + x		
	x = 0.3		
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$		1
	$k = \frac{2.303}{t}$ $\log \frac{0.4}{0.8-0.7}$		
	0.0 0.7		1
	$k = \frac{2.303}{100} \log \frac{0.4}{0.1}$		
	$k = \frac{2.303}{100} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$		1
26	a) $\frac{x}{m} = k p^{1/n}$ or $\log (x/m) = \log k + 1/n \log p$		1
	b) Dispersed phase = liquid Dispersion medium = So	olid	1
	c) Because of coagulation of colloidal particles		1
27	a) +3 +2 +4 oxidation states		1
	b) Transition elements		
	·		

	(1) [5]	<u> </u>
	(i) Form coloured compounds	
	(ii) Form complexes	
	(iii) Act as catalysts	
	(iv) Paramagnetic	
	(v) Form alloys	
	(vi) Form interstitial compounds (any two)	1/2+1/2
	Or any other	
	c) Zn because of fully filled d orbitals	1/2+1/2
	OR	
27	a) Because of stable half filled orbitals (3d ⁵)	1
	b) Because Zn has no unpaired electrons in d orbitals.	1
	c) Because of the presence of one unpaired electron in Ti ³⁺ whereas there is no	1
	unpaired electron in Sc ⁺³	
28	a)	
	(i)	
	CH ₃ -CHO CH ₃ MgBr CH ₃ CH(CH ₃)- OMgBr H ₃ O ⁺ CH ₃ CH(OH)- CH ₃	1
	21.5 21.2 21.30.1(21.1) 21.30 21.301(21.1) 21.3	_
	(ii) CH₃CHO Zn-Hg CH₃-CH₃	1
	Conc HCl	_
	(iii) C ₆ H ₅ CHO + CH ₃ -CHO <u>dil NaOH</u> C ₆ H ₅ CH(OH) CH ₂ CHO	1
	(Award full marks even if only products are given)	1
	Awara rail marks even il only products are given)	
	h) (i) Add NaHCO- honzoic acid will give brick offervoccopes whereas athyl horzocta will	1
	b) (i) Add NaHCO ₃ , benzoic acid will give brisk effervescence whereas ethyl benzoate will	1
	not give this test. (or any other test)	1
	(ii) Add tollen's reagent, propanal will give silver mirror whereas Butan-2-one will not	1
	give this test. (or any other test)	
20	OR	
28	a) (i) Because the positive charge on carbonyl carbon of CH₃ CHO decreases to a lesser	1
	extent due to one electron releasing (+I effect) CH ₃ group as compared to CH ₃ COCH ₃	
	(two electron releasing group CH ₃) and hence more reactive.	
	(ii) because one of the –NH ₂ is involved in resonance with carbonyl group and hence	1
	acquires positive charge.	
	(b) (i)	
	0	
	CHO	
	Cl H ₂	1
	Pd - BaSO ₄	
	Ť	
	(ii)	
	(i) X ₂ /Red phosphorus	
	R-CH ₋ -COOH → R-CH-COOH	
	(ii) H ₂ O	1
	X V. Cl. D	_
	X = Cl, Br	
	(iii)	

	н	H H	1
	H C=	$= O + Conc. KOH \longrightarrow H - C - OH + H - COK$	
	(or any oth	er suitable reaction)	
29	(i)	Raoult's law: state that for a solution containing volatile components, the partial vapour pressure of each component is directly proportional to its	1
		mole fraction. Ideal solution.	1
	(ii)	$\Delta T_b = i K_b x \frac{W \text{cacl}_2}{M \text{cacl}_2} x \frac{1000}{w H_2 O}$ $= 3x0.512 \text{ K kg mol}^{-1} x \frac{10g}{111 \ gmol^{-1}} x \frac{1000}{200 \ \text{kg}}$	1
		= 3x0.512 K kg mol ⁻¹ x $\frac{10g}{111 gmol^{-1}}$ x $\frac{1000}{200 \text{kg}}$	1
		= 0.69K or 0.69°C	1
		OR	
29	a)		
	(i)	Azeotrope is a liquid mixture which boils at constant temperature with constant composition.	1
	(ii)	Osmotic pressure: is the pressure applied on the solution side to stop the flow of solvent across the semi permeable membrane from lower concentration of the solution to higher concentration.	1
	(iii)	Colligative properties: are the properties of solution which depend upon the no of moles of solute or concentration of solute and not on the nature of solute.	1
	b)	Solute. $M = \frac{n_B}{V(L)} = \frac{w_B}{m_B} \times \frac{1000}{V(mL)}$ $M = \frac{9.8 \ g}{98 \ g \ mol^{-1}} \times \frac{1000}{100} \times 1.02$ (B \rightarrow Solute)	1/2
		$M = \frac{9.8 g}{98 a mol^{-1}} \times \frac{1000}{100} \times 1.02$	1/2
		M = 1.02M	1
30	a) (i)	Because Bi is more stable in +3 oxidation state.	
	(ii)	Because of the availability to d orbital in P which is not in N/ nitrogen	
	(iii)	cannot extend its covalency beyond 4	1x3=3
	()	to Fe ⁺³ / HCl is only a mild oxidising agent	
	b) (i)	(ii)	1+1
	F	O H	
	F	Xe F	
20	OR	(:) (::)	1.1
30	a)	(i) (ii)	1+1

Sr. No.	Name	Sr. No.	Name	
1	Dr. (Mrs.) Sangeeta Bhatia	9	Sh. Partha Sarathi Sarkar	
2	Dr. K.N. Uppadhya	10	Mr. K.M. Abdul Raheem	
3	Prof. R.D. Shukla	11	Mr. Akileswar Mishra	
4	Sh. S.K. Munjal	12	Sh. Maya George	
5	Sh. Rakesh Dhawan	13	Sh. Virendra Singh Phogat	
6	Sh. D.A. Mishra	14	Dr. (Mrs.) Sunita Ramrakhiani	
7	Sh. Deshbir Singh	15	Ms. Garima Bhutani	
8	Ms. Neeru Sofat			