Series GBM

कोड नं. Code No. 56/1

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघ्-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं ।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमित नहीं है ।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carries 4 marks.
- (vi) Questions number **24** to **26** are long answer questions and carry **5** marks each.
- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. सांद्र HNO_3 द्वारा P_4 का ऑक्सीकरण करने पर जो फ़ॉस्फ़ोरस का यौगिक प्राप्त होता है, उसका सूत्र लिखिए ।

Write the formula of the compound of phosphorus which is obtained when conc. HNO_3 oxidises P_4 .

1

1

2. निम्नलिखित यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{array}{ccc} \mathbf{H_{3}C-C} &=& \mathbf{C-CH_{2}-OH}\\ & & | & |\\ & & \mathbf{CH_{3}} & \mathbf{Br} \end{array}$$

56/1 2

Write the IUPAC name of the following compound:

$$\begin{array}{ccc} \mathbf{H_{3}C-C} &=& \mathbf{C-CH_{2}-OH}\\ & & | & |\\ & \mathbf{CH_{3}} & \mathbf{Br} \end{array}$$

- **3.** (a) सक्रियण ऊर्जा (E_a), और
 - (b) अभिक्रिया की गिब्ज़ ऊर्जा (△G)

पर उत्प्रेरक की उपस्थिति का क्या प्रभाव पड़ता है ?

What is the effect of adding a catalyst on

- (a) Activation energy (E_a), and
- (b) Gibbs energy (ΔG) of a reaction?

Out of
$$\bigvee^X$$
 and \bigvee^X , which is an example of allylic halide?

5. जब द्रव को ठोस में परिक्षिप्त किया जाता है, तो किस प्रकार का कोलॉइड बनता है ? एक उदाहरण दीजिए।

What type of colloid is formed when a liquid is dispersed in a solid? Give an example.

6. (a) निम्नलिखित यौगिकों को उनके अम्ल सामर्थ्य के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

p-क्रीसॉल, p-नाइट्रोफ़ीनॉल, फ़ीनॉल

(b) निम्नलिखित अभिक्रिया की (घुमावदार तीर अंकन का उपयोग करते हुए) क्रियाविधि लिखिए:

$$CH_2 = CH_2 \xrightarrow{H_3O^+} CH_3 - CH_2^+ + H_2O$$
 1+1=2

अथवा

1

ब्यूटेन-2-ऑल की निम्नलिखित के साथ अभिक्रिया से बनने वाले उत्पादों की संरचनाएँ लिखिए : 1+1=2

- (a) CrO₃
- (b) SOCl₂
- (a) Arrange the following compounds in the increasing order of their acid strength:

p-cresol, p-nitrophenol, phenol

(b) Write the mechanism (using curved arrow notation) of the following reaction:

$$CH_2 = CH_2 \xrightarrow{H_3O^+} CH_3 - CH_2^+ + H_2O$$

OR.

Write the structures of the products when Butan-2-ol reacts with the following:

- (a) CrO_3
- (b) SOCl₂
- 7. ऐलुमिनियम के $8\cdot 1$ g में कितनी एकक कोष्ठिकाएँ होंगी यदि यह फलक-केन्द्रित घनीय (एफ.सी.सी.) संरचना में क्रिस्टलीकृत होता है ? (Al का परमाणु द्रव्यमान = 27 g mol⁻¹) Calculate the number of unit cells in $8\cdot 1$ g of aluminium if it crystallizes in a face-centred cubic (f.c.c.) structure. (Atomic mass of Al = 27 g mol⁻¹)

2

2

- 8. निम्नलिखित की संरचनाएँ आरेखित कीजिए :
 - (a) H_2SO_3
 - (b) HClO₃

Draw the structures of the following:

- (a) H_2SO_3
- (b) HClO₃

56/1

9. उस सेल का नाम लिखिए जिसे सामान्यत: श्रवण यंत्रों (सहायों) में प्रयुक्त किया जाता है। इस सेल के ऐनोड तथा कैथोड पर होने वाली अभिक्रियाओं को लिखिए।

Write the name of the cell which is generally used in hearing aids. Write the reactions taking place at the anode and the cathode of this cell.

- **10.** आई.यू.पी.ए.सी. मानकों का प्रयोग करते हुए निम्निलिखित के लिए सूत्र लिखिए : 1+1=2
 - (a) सोडियम डाइसायनिडोऑरेट(I)
 - (b) टेट्राऐम्मीनक्लोरिडोनाइट्टिटो-N-प्लैटिनम(IV) सल्फेट

Using IUPAC norms write the formulae for the following:

- (a) Sodium dicyanidoaurate(I)
- (b) Tetraamminechloridonitrito-N-platinum(IV) sulphate
- 11. (a) अंतराआण्विक बलों की प्रकृति के आधार पर निम्नलिखित ठोसों को वर्गीकृत कीजिए :

सिलिकन कार्बाइड, ऑर्गन

- (b) गर्म करने पर ZnO पीला हो जाता है। क्यों ?
- (c) वर्ग 12-16 यौगिकों से क्या अभिप्राय है ? एक उदाहरण दीजिए ।

(a) Based on the nature of intermolecular forces, classify the following solids:

Silicon carbide, Argon

- (b) ZnO turns yellow on heating. Why?
- (c) What is meant by groups 12-16 compounds? Give an example.
- 12. (a) एक सेल जिसमें निम्नलिखित अभिक्रिया होती है:

$$2\;\mathrm{Fe}^{3+}\left(\mathrm{aq}\right)+2\;\mathrm{I}^{-}(\mathrm{aq})\longrightarrow 2\;\mathrm{Fe}^{2+}\left(\mathrm{aq}\right)+\mathrm{I}_{2}\left(\mathrm{s}\right)$$

का $298~{\rm K}$ ताप पर $\stackrel{\circ}{\rm E}_{\stackrel{\circ}{\rm He}}=0.236~{\rm V}$ है । सेल अभिक्रिया की मानक गिब्ज़ ऊर्जा परिकलित कीजिए । (दिया गया है : 1 F = $96,500~{\rm C~mol}^{-1}$)

(b) यदि एक धात्विक तार में 0.5 ऐम्पियर की धारा 2 घंटों के लिए प्रवाहित होती है, तो तार में से कितने इलेक्ट्रॉन प्रवाहित होंगे ? (दिया गया है : $1 \text{ F} = 96,500 \text{ C mol}^{-1}$) 3

P.T.O.

2

- (a) The cell in which the following reaction occurs: $2 \ Fe^{3+} (aq) + 2 \ I^- (aq) \longrightarrow 2 \ Fe^{2+} (aq) + I_2 (s)$ has $E_{cell}^{\circ} = 0.236 \ V$ at 298 K. Calculate the standard Gibbs energy of the cell reaction. (Given : 1 F = 96,500 C mol⁻¹)
- (b) How many electrons flow through a metallic wire if a current of 0.5 A is passed for 2 hours ? (Given : $1 \text{ F} = 96,500 \text{ C mol}^{-1}$)
- 13. (a) संकर $[C_0(NH_3)_5 (SCN)]^{2+}$ किस प्रकार की समावयवता दिखाता है ?
 - (b) $[NiCl_4]^{2-}$ अनुचुंबकीय है जबिक $[Ni(CN)_4]^{2-}$ प्रतिचुंबकीय है । क्यों ? (Ni का परमाणु क्रमांक = 28)
 - (c) निम्न प्रचक्रण चतुष्फलकीय संकुल क्यों विरले ही देखे जाते हैं ? $1 \times 3 = 3$
 - (a) What type of isomerism is shown by the complex $[Co(NH_3)_5 (SCN)]^{2+}$?
 - (b) Why is $[NiCl_4]^{2-}$ paramagnetic while $[Ni(CN)_4]^{2-}$ is diamagnetic? (Atomic number of Ni = 28)
 - (c) Why are low spin tetrahedral complexes rarely observed?
- 14. निम्नलिखित में से प्रत्येक के बीच एक-एक अंतर लिखिए :

 $1 \times 3 = 3$

- (a) बहुआण्विक कोलॉइड और सहचारी कोलॉइड
- (b) स्कंदन और पेप्टन (पेप्टाइज़ेशन)
- (c) समांगी उत्प्रेरण और विषमांगी उत्प्रेरण

अथवा

- (a) द्ध की परिक्षिप्त प्रावस्था और परिक्षेपण माध्यम लिखिए।
- (b) भौतिक अधिशोषण और रासायनिक अधिशोषण के बीच एक समानता लिखिए।
- (c) FeCl_3 से $\operatorname{Fe(OH)}_3$ सॉल को बनाने वाली रासायनिक विधि का नाम लिखिए । $1 \times 3 = 3$

Write one difference in each of the following:

- (a) Multimolecular colloid and Associated colloid
- (b) Coagulation and Peptization
- (c) Homogeneous catalysis and Heterogeneous catalysis

OR

- (a) Write the dispersed phase and dispersion medium of milk.
- (b) Write one similarity between physisorption and chemisorption.
- (c) Write the chemical method by which ${\rm Fe(OH)}_3$ sol is prepared from ${\rm FeCl}_3$.
- 15. 25% वियोजन के लिए एक प्रथम कोटि की अभिक्रिया 20 मिनट लेती है । अभिक्रिया को 75% पूरा करने में जो समय लगेगा, उसकी गणना कीजिए । (दिया गया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

A first order reaction takes 20 minutes for 25% decomposition. Calculate the time when 75% of the reaction will be completed.

(Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

- 16. आपको निम्नलिखित यौगिक दिए गए हैं :
 - 2-ब्रोमोपेन्टेन, 2-ब्रोमो-2-मेथिलब्यूटेन, 1-ब्रोमोपेन्टेन
 - (a) $S_N 2$ अभिक्रिया में सबसे अधिक अभिक्रियाशील यौगिक का नाम लिखिए ।
 - (b) ध्रुवण घूर्णक यौगिक का नाम लिखिए।
 - (c) β -विलोपन अभिक्रिया में सबसे अधिक अभिक्रियाशील यौगिक का नाम लिखिए । $1 \times 3 = 3$

The following compounds are given to you:

- 2-Bromopentane, 2-Bromo-2-methylbutane, 1-Bromopentane
- (a) Write the compound which is most reactive towards $\mathbf{S_{N}2}$ reaction.
- (b) Write the compound which is optically active.
- (c) Write the compound which is most reactive towards β -elimination reaction.

17. निम्नलिखित के सिद्धांत लिखिए:

 $1 \times 3 = 3$

- (a) मंडल परिष्करण
- (b) फेन प्लवन विधि
- (c) वर्णलेखिकी

Write the principle of the following:

- (a) Zone refining
- (b) Froth floatation process
- (c) Chromatography

18. निम्नलिखित अभिक्रियाओं में A, B तथा C यौगिकों की संरचनाएँ लिखिए : $1\frac{1}{2} \times 2 = 3$

(a)
$$CH_3 - COOH \xrightarrow{NH_3/\triangle} A \xrightarrow{Br_2/KOH (aq)} B \xrightarrow{CHCl_3 + alc. KOH} C$$

(b)
$$C_6H_5N_2^+BF_4^- \xrightarrow{NaNO_2/Cu} A \xrightarrow{Fe/HCl} B \xrightarrow{CH_3COCl/$$
 पिरीडीन C

Write the structures of compounds A, B and C in the following reactions:

(a)
$$CH_3 - COOH \xrightarrow{NH_3/\triangle} A \xrightarrow{Br_2/KOH (aq)} B \xrightarrow{CHCl_3 + alc. KOH} C$$

(b)
$$C_6H_5N_2^+BF_4^- \xrightarrow{NaNO_2/Cu} A \xrightarrow{Fe/HCl} B \xrightarrow{CH_3COCl/pyridine} C$$

19. निम्नलिखित बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों की संरचनाएँ लिखिए : $1 \times 3 = 3$

- (a) नाइलॉन-6,6
- (b) मेलैमाइन-फॉर्मेल्डिहाइड बहुलक
- (c) ब्यूना-S

Write the structures of the monomers used for getting the following polymers:

- (a) Nylon-6,6
- (b) Melamine-formaldehyde polymer
- (c) Buna-S

20. निम्नलिखित को परिभाषित कीजिए:

 $1 \times 3 = 3$

- (a) ऋणायनी अपमार्जक
- (b) सीमित स्पेक्टम प्रतिजैविक
- (c) पूतिरोधी

Define the following:

- (a) Anionic detergents
- (b) Limited spectrum antibiotics
- (c) Antiseptics

21. निम्नलिखित के कारण बताइए :

 $1 \times 3 = 3$

- (a) लाल फ़ॉस्फ़ोरस, श्वेत फ़ॉस्फ़ोरस की तुलना में कम अभिक्रियाशील होता है।
- (b) हैलोजनों की इलेक्ट्रॉन लब्धि एन्थैल्पियाँ अधिकतम ऋणात्मक होती हैं।
- (c) N_2O_5 , N_2O_3 की अपेक्षा अधिक अम्लीय है ।

Give reasons for the following:

- (a) Red phosphorus is less reactive than white phosphorus.
- (b) Electron gain enthalpies of halogens are largely negative.
- (c) N_2O_5 is more acidic than N_2O_3 .

22. निम्नलिखित के कारण बताइए:

 $1 \times 3 = 3$

- (a) ऐनिलीन का ऐसीटिलीकरण इसका सक्रियण प्रभाव कम करता है।
- (b) ${
 m CH_3NH_2}\,,~{
 m C_6H_5NH_2}$ की तुलना में अधिक क्षारीय होता है ।
- (c) यद्यपि $-NH_2$ समूह o/p निर्देशक होता है, फिर भी ऐनिलीन नाइट्रोकरण द्वारा यथेष्ट मात्रा में m-नाइट्रोऐनिलीन देती है ।

Give reasons for the following:

- (a) Acetylation of aniline reduces its activation effect.
- (b) CH_3NH_2 is more basic than $C_6H_5NH_2$.
- (c) Although -NH₂ is o/p directing group, yet aniline on nitration gives a significant amount of m-nitroaniline.

23. टी.वी. में एक प्रोग्राम में ब्रेड तथा दूसरे बेकरी उत्पादों में पोटैशियम ब्रोमेट और पोटैशियम आयोडेट जैसे कैन्सरजन (कैंसरकारी) रसायनों की उपस्थिति देखने के बाद, रूपाली, बारहवीं कक्षा की छात्रा, ने दूसरों को खाद्य-पदार्थों में इन कैन्सरजन से होने वाले हानिकर प्रभावों के बारे में जागृत करने का निश्चय किया । वह स्कूल प्रधानाचार्य से मिली और उनसे आग्रह किया कि वे कैन्टीन ठेकेदार को आदेश दें कि वह विद्यार्थियों को सैन्डविच, पिज्जा, बर्गर और दूसरे बेकरी उत्पाद न बेचें । प्रधानाचार्य ने तत्काल क़दम उठाते हुए कैन्टीन ठेकेदार को बेकरी उत्पादों की जगह कुछ प्रोटीन एवं विटामिन से भरपूर खाद्य-पदार्थ जैसे फल, सलाद, अंकुरित पदार्थ रखने का आदेश दिया । इस निर्णय का सभी माता-पिता तथा विद्यार्थियों ने स्वागत किया ।

उपर्युक्त परिच्छेद को पढ़ने के बाद, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (a) रूपाली द्वारा किन मूल्यों (कम-से-कम दो) को दर्शाया गया है ?
- (b) आमतौर से ब्रेड में कार्बोहाइड्रेट्स का कौन-सा पॉलिसैकेराइड घटक उपस्थित होता है ?
- (c) प्रोटीनों की द्वितीयक संरचना के दो प्रकार लिखिए ।
- (d) जल विलेय विटामिनों के दो उदाहरण दीजिए।

After watching a programme on TV about the presence of carcinogens (cancer causing agents) Potassium bromate and Potassium iodate in bread and other bakery products, Rupali a Class XII student decided to make others aware about the adverse effects of these carcinogens in foods. She consulted the school principal and requested him to instruct the canteen contractor to stop selling sandwiches, pizzas, burgers and other bakery products to the students. The principal took an immediate action and instructed the canteen contractor to replace the bakery products with some protein and vitamin rich food like fruits, salads, sprouts, etc. The decision was welcomed by the parents and the students.

After reading the above passage, answer the following questions:

- (a) What are the values (at least two) displayed by Rupali?
- (b) Which polysaccharide component of carbohydrates is commonly present in bread?
- (c) Write the two types of secondary structures of proteins.
- (d) Give two examples of water soluble vitamins.

- 24. (a) निम्नलिखित के कारण दीजिए:
 - (i) संक्रमण धातुएँ परिवर्तनीय ऑक्सीकरण अवस्थाएँ दर्शाती हैं।
 - (ii) Zn, Cd और Hg नर्म (मृद्) धातुएँ हैं।
 - (iii) ${\rm Mn^{3+}/Mn^{2+}}$ युग्म के लिए ${\rm E^\circ}$ का मान ${\rm Cr^{3+}/Cr^{2+}}$ की तुलना में बहुत अधिक धनात्मक (+ $1.57~{
 m V}$) होता है ।
 - (b) लैन्थेनॉयड और ऐक्टिनॉयड तत्त्वों के रसायन के बीच एक समानता और एक अंतर लिखिए । 3+2=5

अथवा

(a) निम्नलिखित 3d श्रेणी के संक्रमण धातुओं के आयन हैं :

$$Ti^{4+}$$
, V^{2+} , Mn^{3+} , Cr^{3+}

(परमाणु क्रमांक : Ti = 22, V= 23, Mn = 25, Cr = 24)

निम्नलिखित के उत्तर दीजिए :

- (i) कौन-सा आयन जलीय विलयन में सबसे अधिक स्थायी है और क्यों ?
- (ii) कौन-सा आयन प्रबल ऑक्सीकारक है और क्यों ?
- (iii) कौन-सा आयन रंगहीन है और क्यों ?
- (b) निम्नलिखित समीकरणों को पूरा कीजिए :
 - (i) $2 \text{ MnO}_4^- + 16 \text{ H}^+ + 5 \text{ S}^{2-} \longrightarrow$
 - (ii) $KMnO_4 \xrightarrow{35}$

3+2=5

- (a) Account for the following:
 - (i) Transition metals show variable oxidation states.

- (ii) Zn, Cd and Hg are soft metals.
- (iii) E° value for the Mn^{3+}/Mn^{2+} couple is highly positive (+ 1.57 V) as compared to Cr^{3+}/Cr^{2+} .

(b) Write one similarity and one difference between the chemistry of lanthanoid and actinoid elements.

OR

(a) Following are the transition metal ions of 3d series:

$$Ti^{4+}$$
, V^{2+} , Mn^{3+} , Cr^{3+}

(Atomic numbers : Ti = 22, V = 23, Mn = 25, Cr = 24)

Answer the following:

- (i) Which ion is most stable in an aqueous solution and why?
- (ii) Which ion is a strong oxidising agent and why?
- (iii) Which ion is colourless and why?
- (b) Complete the following equations:
 - $(i) \hspace{0.5cm} 2\hspace{0.1cm}MnO_4^- + 16\hspace{0.1cm}H^+ + 5\hspace{0.1cm}S^{2-} \longrightarrow$
 - (ii) $KMnO_4 \xrightarrow{heat}$
- **25.** (a) सूक्रोस के 10% (द्रव्यमान में) जलीय विलयन का हिमांक $269\cdot15~\rm K$ है। यदि शुद्ध जल का हिमांक $273\cdot15~\rm K$ है, तो ग्लूकोस के 10% जलीय विलयन के हिमांक की गणना कीजिए।

दिया गया है :

(सूक्रोस का मोलर द्रव्यमान = 342 g mol^{-1}) (ग्लूकोस का मोलर द्रव्यमान = 180 g mol^{-1})

- (b) निम्नलिखित पदों को परिभाषित कीजिए:
 - (i) मोललता (m)
 - (ii) असामान्य मोलर द्रव्यमान

3+2=5

अथवा

- (a) 30 g यूरिया (M = 60 g mol^{-1}) को 846 g जल में घोला जाता है । यदि 298 K पर शुद्ध जल का वाष्प दाब 23.8 mm Hg है, तो इस विलयन के लिए जल के वाष्प दाब का परिकलन कीजिए ।
- (b) आदर्श विलयन और अनादर्श विलयन के बीच दो अंतर लिखिए । 3+2=5
- (a) A 10% solution (by mass) of sucrose in water has a freezing point of 269·15 K. Calculate the freezing point of 10% glucose in water if the freezing point of pure water is 273·15 K.

 Given:

(Molar mass of sucrose = 342 g mol^{-1})

(Molar mass of glucose = 180 g mol^{-1})

- (b) Define the following terms:
 - (i) Molality (m)
 - (ii) Abnormal molar mass

OR

- (a) 30 g of urea $(M = 60 \text{ g mol}^{-1})$ is dissolved in 846 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm Hg.
- (b) Write two differences between ideal solutions and non-ideal solutions.
- 26. (a) निम्नलिखित अभिक्रियाओं के उत्पादों को लिखिए:

(i)
$$O + HCN \longrightarrow ?$$

(ii)
$$COONa + NaOH \xrightarrow{CaO} ?$$

(iii)
$$CH_3 - CH = CH - CN \xrightarrow{\text{(a) DIBAL-H}} ?$$

- (b) निम्नलिखित यौगिक युगलों में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए :
 - (i) ब्यूटेनैल और ब्यूटेन-2-ऑन
 - (ii) बेन्जोइक अम्ल और फीनॉल

3+2=5

अथवा

- (a) निम्नलिखित में होने वाली अभिक्रियाओं को लिखिए:
 - (i) ईटार्ड अभिक्रिया
 - (ii) स्टीफेन अपचयन
- (b) निम्नलिखित को आप अधिकतम दो चरणों में किस प्रकार रूपांतरित करेंगे :
 - (i) बेन्जोइक अम्ल से बेन्जैल्डिहाइड
 - (ii) ऐसीटोफीनोन से बेन्ज़ोइक अम्ल
 - (iii) एथेनॉइक अम्ल से 2-हाइड्रॉक्सीएथेनॉइक अम्ल

2+3=5

(a) Write the product(s) in the following reactions:

(i)
$$O + HCN \longrightarrow ?$$

(ii) COONa + NaOH
$$\xrightarrow{\text{CaO}}$$
 ?

(iii)
$$CH_3 - CH = CH - CN \xrightarrow{(a) DIBAL-H} ?$$

- (b) Give simple chemical tests to distinguish between the following pairs of compounds:
 - (i) Butanal and Butan-2-one
 - (ii) Benzoic acid and Phenol

OR

- (a) Write the reactions involved in the following:
 - (i) Etard reaction
 - (ii) Stephen reduction
- (b) How will you convert the following in not more than two steps:
 - (i) Benzoic acid to Benzaldehyde
 - (ii) Acetophenone to Benzoic acid
 - (iii) Ethanoic acid to 2-Hydroxyethanoic acid

56/1 15

Marking scheme – 2017

CHEMISTRY (043)/ CLASS XII

Outside Delhi set (56/1)

 H₃PO₄ 2-Bromo-3-methylbut-2- a. Decreases b. No effect 	en-1-ol	1
3. a. Decreases b. No effect		1
3. a. Decreases b. No effect		
		1/2
1		1/2
Ĵ		1
5. Gel e.g. cheese, butter, jo	` , ,	1/2 + 1/2
6. a. p-cresol < Phenol < p-r		1
b. >C = C < + H	$ \overset{\circ}{O}_{+}^{-} H \Longrightarrow \overset{-}{\overset{\circ}{C}}_{-} \overset{\circ}{C}_{-} \overset{+}{\overset{+}{C}} \overset{\circ}{\circ} + H^{3} \overset{\circ}{\circ} $	1
	OR	
6	OII.	
H_3C CH_3 CH_3	1 ₃	1
7. n= given mass / molar n	nass	1/2
= 8.1 / 27 mol Number of atoms= $\frac{8.1}{27}$ x Number of atoms in one	6.022x10 ²³	1/2
Number of unit cells = $[\frac{1}{2}]$		1/2
= 4	4.5 x10 ²²	1/2
Or		
27g of Al contains= 6.02	22x10 ²³ atoms	1/2
8.1g of Al contains =(6. No of unit cells = total n	022x10 ²³ / 27) x 8.1 o of atoms /4	1/2
	22	1/2
=4.5 x10)22	1/2

			1
8.		· ·	1,1
		•	
	18		
	но		
	HO		
	a.)	b.)	
9.	Mercury cell) - 2o-	1
	Anode : $Zn(Hg) + 2OH \rightarrow ZnO(s) + H_2O$ Cathode : $HgO + H_2O + 2e \rightarrow Hg(I) + 2O$		½ ½
10.	(i) Na[Au(CN) ₂]	2011	1
	(ii) [Pt(NH ₃) ₄ Cl (NO ₂)]SO ₄		1
11.	(a) Covalent solid / network solid , n	nolecular solid	1/2 + 1/2
	(b) $ZnO \xrightarrow{Heating} Zn^{2+} + 1/2 O_2 + 2e^{-}$		
		erstitial sites and the electrons move	
	to neighbouring voids		1
	(c) Compounds prepared by combin	<u> </u>	1/2 + 1/2
12	like semiconductors. For eg ZnS, CdS	, CaSe, Hg1e (Any one)	, ,2
12.	(a) $\Delta G^0 = -nFE^0_{cell}$		1/2
	n= 2		/2
	$\Delta G^0 = -2 \times 96500 \text{ C/mol} \times 0.236 \text{ V}$		1/2
	= - 45548 J/mol		
	= -45.548 kJ/mol		
	(b) Q=It = 0.5 x 2 x 60 x 60		
	= 3600 C		1/2
	96500 C = 6.023 x 10 ²³ electrons		
	3600 C = 2.25 x 10 ²² electrons		1
13.	(a) Linkage isomerism		1
	(b) In $[NiCl_4]^{2-}$, due to the pre	sence of Cl ⁻ , a weak field ligand	
		in [Ni(CN) ₄] ²⁻ , CN ⁻ is a strong	1
	field ligand and pairing takes place / diagrammatic		
	representation		
	(c) Because of very low CFSE which is not able to pair up the		
	electrons.		
14.	(-)		
	(a) Multimolecular colloid	Associated colloid	
	(a) Aggregation of large	(a) Aggregation of large	1
	number of small atoms or	number of ions in	
	molecules.	concentrated solutions.	
	(b)		
	Coagulation	Peptization	
	(a) Settling down of colloidal	(a) Conversion of precipitate	1
	particles.	into colloidal sol by adding small amount of	
		adding sman amount of	

		electrolyte.	
	(c)		
		eterogeneous catalysis	
	(a) Reactants and catalyst	(a) Reactants and catalyst are in different phases.	1
	are in same phase.	are in different phases.	1
	OR		
14	(a) Dispersed phase-liquid , Dispersion medium – liquid		1
	(b) Both are surface phenomenon,		1
	surface area (or any other corre (c) Hydrolysis / FeCl₃+3H ₂ O	ect similarity)	1
10			
15.	$t = \frac{2.303}{k}$ lo	$\log \frac{[\Lambda]^0}{[\Lambda]}$	1/2
	K		
	2.30	3 , 100	
	$20 \min = \frac{1}{k}$	$\frac{3}{75} \log \frac{100}{75}$ - (i)	1/2
	2 202	100	
	$t = \frac{2.303}{k}$ lo	og <u>75</u> -(ii)	
	K		1/2
	Divide (i) equation	n by (ii)	
	$\frac{20}{t} = \frac{2.303}{k} \log \frac{100}{75}$		
	$\frac{2.303}{k}$ lo	g 100 25	
	= log 4/3		
	log 4		
		250/ 0.6021	4
	t= 96.3 min	(or any other correct procedure)	1
16.	(i) 1- Bromopentane	(or any other correct procedure)	1
10.	(ii) 2-Bromopentane		1
	(iii) 2-Bromo-2-methylbutane		1
17.	(a) Zone Refining – Impurities are m	ore soluble in the melt than in the	1
	solid metal.		
	(b) Mineral particles are wetted by		1
	particles are wetted by water a		
	(c) Different components of a mixto adsorbent.	are are differently adsorbed on an	1
18.	(a) (A) CH ₃ CONH ₂		1/2
10.	(B) CH ₃ NH ₂		1/2
	(C) CH ₃ NC		1/2
	w ==		
	NO ₂		
	(b) (A)		1/2
	NH ₂		
			1/2
	(B)		1/2

	(C)	
		1/2
	H-N-C-CH ₃	
19.	(a) H ₂ N-(CH ₂) ₆ -NH ₂ , HOOC-(CH ₂) ₄ -COOH	1
	(b)	1
	H ₂ N N NH ₂	
	nyn	
	NH ₂ and HCHO	
	(c) CH ₂ =CH-CH=CH ₂ , C ₆ H ₅ -CH=CH ₂	1
20.	(a) Anionic detergents are sodium salts of sulphonated long chain alcohols or hydrocarbons / alkylbenzene sulphonate or	
	detergents whose anionic part is involved in cleansing action.	1
	(b) Limited spectrum antibiotics are effective against a single	
	organism or disease. (c) Antiseptics are the chemicals which either kill or prevent growth	1
	of microbes on living tissues.	1
21.	(a) Red phosphorous being polymeric is less reactive than white	1
	phosphorous which has discrete tetrahedral structure.	4
	 (b) They readily accept an electron to attain noble gas configuration. (c) Because of higher oxidation state(+5) of nitrogen in N₂O₅ 	1 1
22.	(i) Due to the resonance, the electron pair of nitrogen atom gets	
	delocalised towards carbonyl group / resonating structures.	1
	(ii)Because of +I effect in methylamine electron density at nitrogen increases whereas in aniline resonance takes place and electron	4
	density on nitrogen decreases / resonating structures.	1 1
1 2	(iii)Due to protonation of aniline / formation of anilinium ion (i) Concerned , caring, socially alert, leadership (or any other 2	
23.	values)	1/2 + 1/2
	(ii) Starch	1/2 + 1/2
	(iii) α -Helix and β-pleated sheets (iv) Vitamin B / B_1 / B_2 / B_6 / C (any two)	1/2 + 1/2
24.	a. (i) Availability of partially filled d-orbitals / comparable energies of ns	1
	and (n-1) d orbitals	
	(ii) Completely filled d-orbitals / absence of unpaired d electrons cause	1
	weak metallic bonding (iii) Because Mn ²⁺ has d ⁵ as a stable configuration whereas Cr ³⁺ is	1
	more stable due to stable t^3_{2g}	
	b) Similarity-both are stable in +3 oxidation state/ both show	
	contraction/irregular electronic configuration (or any other suitable	1
	similarity) Difference- actinoids are radioactive and lanthanoids are not /	
	actinoids show wide range of oxidation states but lanthanoids don't	1
	(or any other correct difference)	
	OR	
24	a. (i) Cr^{3+} , half filled t^3_{2g}	1/2 + 1/2
	(ii) Mn ³⁺ , due to stable d ⁵ configuration in Mn ²⁺	1/2 + 1/2

	(iii) Ti ⁴⁺ , No unpaired electrons		1/2 + 1/2
	b. (i) $2MnO_4^- + 16H^+ + 5S^2 \rightarrow 5S + 2Mn^{2+} + 16H^+ + 16H$	8H ₂ O	1
	(ii) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	- 1.2	1
25	a) $\Delta T_f = K_f m$		1/2
	Here , $m = w_2 x 1000 / M_2 X M_1$		
	$273.15-269.15 = K_f \times 10 \times 1000/342 \times 90$		1
	K _f = 12.3 K kg/mol		1/2
	$\Delta T_f = K_f m$ = 12.3 x 10 x1000/ 180x90		
	= 7.6 K		
		y other correct method)	1
	b) (i) Number of moles of solute dissolved in per k	tilo gram of the solvent.	1
	(ii) Abnormal molar mass: If the molar mass cale	culated by using any of the	1
	colligative properties to be different than theor		1
	mass _.		
	OR		
25.	(a) $(P_A^0 - P_A)/P_A^0 = (w_B \times M_A)/(M_B \times w_B)$ $\frac{23.8 - P_A}{23.8} = (30 \times 18) / (40 \times w_B)$	₄)	1/2
	$\frac{23.8 - P_A}{1} = (30 \times 18) / $	60 × 846	1
	23.8		1
	$23.8 - P_A = 23.8 \times [(30 \times 1)]$	8) /60 × 846]	
	$23.0 T_A = 23.0 \times [(30 \times 1)]$	0) / 00	1/2
	$23.8 - P_A = 0.253$	2	
	$P_A = 23.55 mm Hg$		
	(b)		
	(6)		
	Ideal solution Non ideal solution		
	(a) It obeys Raoult's law (a)	Does not obey Raoult's	
	over the entire range of	law over the entire	1 +1
	concentration.	range of concentration.	
	$_{(b)} \Delta_{mix} H = 0$	$\Delta_{mix}H_{isnotequal}$	
	$\begin{pmatrix} \text{(c)} \ \Delta_{mix} V = 0 \end{pmatrix}$		
		to 0.	
	(c)	$\Delta_{mix} V$ is not equal	
		to 0.	
	(a	any two correct difference)	
26.	a.		
	OH		1
	CN		-
	(i)		
	\(\frac{1}{2}\)		
	(ii)		1
	` '		

	(iii) CH₃-CH=CH-CHO	1
	b. (i) Tollen's reagent test: Add ammoniacal solution of silver nitrate (Tollen's Reagent) in both the solutions. Butanal gives silver mirror	1
	whereas Butan-2-one does not.	-
	(ii) Add neutral FeCl ₃ in both the solutions, phenol forms violet colour	
	but benzoic acid does not.	1
	(or any other correct test)	
	OR	
26	(a) (i)Étard reaction	
	CH ₃ CH(OCrOHCl ₂) ₂ CHO	
	$+ \operatorname{CrO_2Cl_2} \xrightarrow{\operatorname{CS_2}} \longrightarrow \bigoplus^{\operatorname{CH}(\operatorname{OClOricL}_{2J_2}} \xrightarrow{\operatorname{H_3O}} \longrightarrow \bigoplus^{\operatorname{CHO}}$	
	Tolue. Chromium complex Benzaldehyde	
	or	
	CH ₃ (i) Caronala aca	1
	(i) CrO2Cl2, CS2	
	Toluene (ii)H3O+ Benzaldehyde	
	(ii)Stephen reaction	
	H Q	
	Or	
	(i) SnCl ₂ + HCl	1
	RCN — → RCHO	
	(ii) H₃O+	
	(b) (i)	
	соон сост сно	
	SOCI ₂ Rosenmund's	
	reduction	1
	Benzoic Benzoyl Benzaldehyde	1
	delu cinoride	
	(ii)	
	COCH ₃ COONa COOH	
	I ₂ /NaOH H ₃ O ⁺	1
	Acetophenone Sodium Benzoic	
	benzoate acid	

(c) $CH_3COOH \xrightarrow{Cl_2/P} CH_2COOH \xrightarrow{KOH(Aq)} CH_2COOH$	1
CI OH	
(or any other correct method)	

_				
1	Dr. (Mrs.) Sangeeta Bhatia	12	Sh. S. Vallabhan	
2	Dr. K.N. Uppadhya	13	Dr. Bhagyabati Nayak	
3	Prof. R.D. Shukla	14	Ms. Anila Mechur Jayachandran	
4	Sh. S.K. Munjal	15	Mrs. Deepika Arora	
5	Sh. D.A. Mishra	16	Ms. Seema Bhatnagar	
6	Sh. Rakesh Dhawan	17	Mrs. Sushma Sachdeva	
7	Dr. (Mrs.) Sunita Ramrakhiani	18	Dr. Azhar Aslam Khan	
8	Mrs. Preeti Kiran	19	Mr. Roop Narain Chauhan	
9	Ms. Neeru Sofat	20	Mr. Mukesh Kumar Kaushik	
10	Sh. Pawan Singh Meena	21	Ms. Abha Chaudhary	
11	Mrs. P. Nirupama Shankar	22	Ms. Garima Bhutani	