Series SSO

कोड नं. Code No. 56/3/C

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्र में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे अधिकतम अंक : 70

Time allowed: 3 hours Maximum Marks: 70

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है ।
- (iii) प्रश्न संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) प्रश्न संख्या 11 से 22 तक भी लघू-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) प्रश्न संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न संख्या **24** से **26** तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए **5** अंक हैं।
- (vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें। कैल्कुलेटरों के उपयोग की अनुमित नहीं है।

General Instructions:

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short answer questions and carry 2 marks each.
- (iv) Questions number 11 to 22 are also short answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number **24** to **26** are long answer questions and carry **5** marks each.

1

- (vii) Use log tables, if necessary. Use of calculators is **not** allowed.
- 1. दिए गए यौगिक का आई.यू.पी.ए.सी. नाम लिखिए :

$$\begin{array}{c} \mathrm{HO}-\mathrm{CH}_2-\mathrm{CH}-\mathrm{CH}_2-\mathrm{OH} \\ | \\ \mathrm{CH}_3 \end{array}$$

Write the IUPAC name of the given compound:

$$\begin{array}{c} \mathrm{HO}-\mathrm{CH}_2-\mathrm{CH}-\mathrm{CH}_2-\mathrm{OH} \\ | \\ \mathrm{CH}_3 \end{array}$$

- 2. सफ़ेद फ़ॉस्फ़ोरस और लाल फ़ॉस्फ़ोरस में कौन-सा अधिक सक्रिय है और क्यों ? 1

 Out of white phosphorus and red phosphorus, which one is more reactive and why?
- ${f 3.}$ निम्न युग्म में से कौन ${f S}_{
 m N}{f 1}$ अभिक्रिया अधिक तीव्रता से करेगा और क्यों ? ${f 1}$

Which would undergo S_N1 reaction faster in the following pair and why?

$$$^{\rm CH_3}_{\rm 1}$$$
 $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 3}$ – $^{\rm C}_{\rm 1}$ – $^{\rm CH_3}_{\rm 3}$ – $^{\rm CH_3}_{\rm 1}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 3}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 3}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 3}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_3}_{\rm 3}$ – $^{\rm CH_3}_{\rm 2}$ – $^{\rm CH_$

- 4. एक विधि को लिखिए जिसके द्वारा द्रव-विरोधी कोलॉइडों को स्कंदित किया जा सकता है। 1
 Write a method by which lyophobic colloids can be coagulated.
- **5.** एक यौगिक का सूत्र लिखिए जिसमें तत्त्व Y hcp जालक बनाता है और X के परमाणु चतुष्फलकीय रिक्ति का 2/3वाँ भाग घेरते हैं ।

What is the formula of a compound in which the element Y forms hcp lattice and atoms of X occupy $2/3^{rd}$ of tetrahedral voids?

- **6.** (i) नीचे लिखे कॉम्प्लेक्स का आई.यू.पी.ए.सी. नाम लिखिए : $[\text{Co}(\text{NH}_3)_5(\text{NO}_2)](\text{NO}_3)_2$
 - (ii) निम्न कॉम्प्लेक्स का सूत्र लिखिए : 2 पोटैशियम टेटासायनाइडोनिकलेट(II)
 - (i) Write down the IUPAC name of the following complex : $[Co(NH_3)_5(NO_2)](NO_3)_2$
 - (ii) Write the formula for the following complex :

 Potassium tetracyanidonickelate(II)
- 7. निम्न अभिक्रियाओं में प्रयुक्त अभिकारकों के नाम दीजिए :

(i)
$$CH_3 - CO - CH_3 \xrightarrow{?} CH_3 - C - CH_3$$

 $|$
OH

(ii) $CH_3 - COOH \xrightarrow{?} ClCH_2 - COOH$

Name the reagents used in the following reactions:

- (ii) $CH_3 COOH \xrightarrow{?} ClCH_2 COOH$
- 8. हेनरी के नियम को परिभाषित कीजिए । तापमान के बढ़ने पर गैसें द्रव में हमेशा कम घुलती हैं, क्यों ?

अथवा

वाष्पशील घटकों वाले विलयन के लिए राउल्ट के नियम का कथन कीजिए । एक आदर्श विलयन और एक अनादर्श विलयन के बीच दो अंतरों को लिखिए ।

2

2

2

State Henry's law. Why do gases always tend to be less soluble in liquids as the temperature is raised?

OR

State Raoult's law for the solution containing volatile components. Write two differences between an ideal solution and a non-ideal solution.

9. संक्रमण तत्त्वों की कणीकरण की एन्थैिल्पियाँ क्यों उच्चतर होती हैं ? 3d श्रेणी (Sc से Zn) में, किस तत्त्व की कणीकरण एन्थैल्पी न्यूनतम है और क्यों ?

Why do the transition elements have higher enthalpies of atomisation? In 3d series (Sc to Zn), which element has the lowest enthalpy of atomisation and why?

2

2

10. (a) सोडियम क्लोराइड के जलीय विलयन का विद्युत्-अपघटन करने पर कैथोड पर निम्न अभिक्रियाएँ होती हैं :

$$Na^+(aq) + e^- \longrightarrow Na(s)$$
 $E^0 = -2.71 \text{ V}$

$$H^{+}(aq) + e^{-} \longrightarrow \frac{1}{2} H_{2}(g) \quad E^{0} = 0.00 \text{ V}$$

उनके मानक अपचयन इलेक्ट्रोड विभव (E^0) के मानों के आधार पर कैथोड पर किस अभिक्रिया की संभावना है और क्यों ?

- (b) मर्करी सेल का सेल विभव सदा सम्पूर्ण जीवन में स्थाई क्यों रहता है ?
- (a) Following reactions occur at cathode during the electrolysis of aqueous sodium chloride solution:

$$Na^+(aq) + e^- \longrightarrow Na(s)$$
 $E^0 = -2.71 \text{ V}$

$$H^{+}(aq) + e^{-} \longrightarrow \frac{1}{2} H_{2}(g) \quad E^{0} = 0.00 V$$

On the basis of their standard reduction electrode potential (E^0) values, which reaction is feasible at the cathode and why?

(b) Why does the cell potential of mercury cell remain constant throughout its life?

11.	निम्न व	को आप कैसे रूपांतरित करेंगे :	3
	(i)	प्रोप-1-ईन को 1-फ्लुओरोप्रोपेन में	
	(ii)	क्लोरोबेन्ज़ीन को 2-क्लोरोटॉलूईन में	
	(iii)	एथैनॉल को प्रोपेननाइट्राइल में	
		अथवा	
	मुख्य	उत्पादों को लिखिए जब	3
	(i)	n-ब्यूटिल क्लोराइड को ऐल्काहॉली KOH के साथ उपचारित किया जाता है।	
	(ii)	2, 4, 6-ट्राइनाइट्रोक्लोरोबेन्ज़ीन को जल-अपघटित किया जाता है।	
	(iii)	मेथिल क्लोराइड को AgCN के साथ उपचारित किया जाता है।	
	How	do you convert the following:	
	(i)	Prop-1-ene to 1-fluoropropane	
	(ii)	Chlorobenzene to 2-chlorotoluene	
	(iii)	Ethanol to propanenitrile	
		OR	
	Write	e the main products when	
	(i)	n-butyl chloride is treated with alcoholic KOH.	
	(ii)	2, 4, 6-trinitrochlorobenzene is subjected to hydrolysis.	
	(iii)	methyl chloride is treated with AgCN.	
12.	निम्न र	के कारण दीजिए :	3
	(i)	o-नाइट्रोफीनॉल अपेक्षाकृत o-मीथॉक्सीफीनॉल के अधिक अम्लीय है ।	
	(ii)	ब्यूटैन-1-ऑल अपेक्षाकृत डाइएथिल ईथर के उच्चतर क्वथनांक का है।	
	(iii)	$ m HI$ के साथ अभिक्रिया करके $(CH_3)_3C-O-CH_3$ मुख्य उत्पाद के रूप में $(CH_3)_3C-I$ और CH_3-OH देता है न कि $(CH_3)_3C-OH$ और CH_3-I .	

Give reasons for the following:

- (i) o-nitrophenol is more acidic than o-methoxyphenol.
- (ii) Butan-1-ol has a higher boiling point than diethyl ether.
- (iii) $(CH_3)_3C O CH_3$ on reaction with HI gives $(CH_3)_3C I$ and $CH_3 OH$ as the main products and not $(CH_3)_3C OH$ and $CH_3 I$.
- 13. $CaCl_2$ की उस मात्रा को परिकलित कीजिए जिसको यदि 500~g जल में मिलाया जाए तो जल का हिमांक 2~K घट जाता है । यह मानकर चिलए कि $CaCl_2$ पूर्णतया विघटित हो जाता है । $(CaCl_2$ का मोलर द्रव्यमान = $111~g~mol^{-1}$,

$$K_f$$
 जल के लिए = 1.86 K kg mol⁻¹)

Calculate the amount of CaCl_2 (molar mass = 111 g mol⁻¹) which must be added to 500 g of water to lower its freezing point by 2 K, assuming CaCl_2 is completely dissociated. (K_f for water = 1.86 K kg mol⁻¹)

14. घनत्व $10~{\rm g~cm^{-3}}$ वाला एक तत्त्व कोर लम्बाई $3\times 10^{-8}~{\rm cm}$ के साथ एक क्यूबिक यूनिट सेल बनाता है । यदि तत्त्व का परमाणु द्रव्यमान $81~{\rm g~mol^{-1}}$ हो, तो क्यूबिक यूनिट सेल कैसा होगा ?

An element with density 10 g cm⁻³ forms a cubic unit cell with edge length of 3×10^{-8} cm. What is the nature of the cubic unit cell if the atomic mass of the element is 81 g mol⁻¹?

15. निम्न सेल का 25°C पर वि.वा.ब. परिकलित कीजिए:

$$Sn \mid Sn^{2+} \, (0\cdot 001 \; M) \mid \mid H^{+} \, (0\cdot 01 \; M) \mid H_{2}(g) \, (1 \; bar) \mid Pt(s)$$

$$E^0_{(Sn^{2+}\,/\,Sn)} \,= -\,0\!\cdot\!14\;V \qquad E^0_{(H^+\,/\,H_2)} \,= 0\!\cdot\!00\;V$$

Calculate $\ emf$ of the following cell at $25^{\circ}C$:

$$Sn \mid Sn^{2+} \, (0\cdot 001 \; M) \mid \mid H^{+} \, (0\cdot 01 \; M) \mid H_{2}(g) \, (1 \; bar) \mid Pt(s)$$

$$E^0_{(\mathrm{Sn}^{2+}\,/\,\mathrm{Sn})} = -\,0.14\;V \qquad E^0_{(\mathrm{H}^+\,/\,\mathrm{H}_2)} = 0.00\;V$$

3

3

कॉम्प्लेक्स [Co(en)2Cl2]+ के ज्यामितीय समावयवियों को आरेखित कीजिए। 16. (i) क्रिस्टल फील्ड सिद्धान्त के आधार पर यदि $\Delta_0 > P$ हो, तो d^4 आयन के लिए (ii) इलेक्टॉनिक विन्यास लिखिए। $[\mathrm{NiCl_{A}}]^{2-}$ अनुचुम्बकीय है जबिक $[\mathrm{Ni(CO)_{4}}]$ प्रतिचुम्बकीय है, हालाँकि दोनों (iii) चतुष्फलकीय हैं। क्यों ? (Ni का परमाणु क्रमांक = 28) 3 (i) Draw the geometrical isomers of complex [Co(en)₂Cl₂]⁺. On the basis of crystal field theory, write the electronic (ii) configuration for d^4 ion if $\Delta_0 > P$. $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CO)_4]$ is diamagnetic, though (iii) both are tetrahedral. Why? (Atomic number of Ni = 28) निम्न अवलोकनों के लिए कारण बताइए : 17. 3 तापमान के बढ़ने पर भौतिक शोषण घटता है। (i) फिटकरी के डालने से जल का शुद्धीकरण होता है। (ii) ब्राउनियन संचलन कोलॉइडी विलयन को स्थिरता देता है। (iii) Give reasons for the following observations: (i) Physisorption decreases with increase in temperature. Addition of alum purifies the water. (ii) (iii) Brownian movement provides stability to the colloidal solution. ज़िर्कोनियम के परिष्करण में इस्तेमाल होने वाली विधि का नाम दीजिए। 18. (i) आयरन के निष्कर्षण में CO की क्या भूमिका होती है ? (ii) यदि प्राप्त धात् द्रव अवस्था में होती है तो धात् ऑक्साइड का धात् में अपचयन सरल (iii) होता है । क्यों ? 3 Name the method used for the refining of zirconium (i) What is the role of CO in the extraction of Iron? (ii)

Reduction of metal oxide to metal becomes easier if the metal

56/3/C 8

obtained is in liquid state. Why?

(iii)

19.	निम्न	बहलकों	के	एकलकों	के	नाम	और	उनकी	संरच	वनाएँ	लि	खिए	
10.		16.71.11	• • •	7 11 11 111			- 11 \	• 1 1.1	` ' '	>		. ~ /	•

- (i) नाइलॉन-6
- (ii) नोवोलैक
- (iii) ब्यूना-N

Write the names and structures of the monomers of the following polymers:

- (i) Nylon-6
- (ii) Novolac
- (iii) Buna-N
- **20.** (i) निम्न में से कौन-सा एक पॉलिसैकेराइड है ? स्टार्च, माल्टोस, फ्रक्टोस, ग्लूकोस
 - (ii) प्राकृतिक प्रोटीन और अप्राकृतिक प्रोटीन में क्या अंतर है ?
 - (iii) रक्त के स्कंदन के लिए जो विटामिन उत्तरदायी होता है उसका नाम लिखिए।
 - (i) Which one of the following is a polysaccharide : Starch, Maltose, Fructose, Glucose
 - (ii) What is the difference between native protein and denatured protein?
 - (iii) Write the name of the vitamin responsible for the coagulation of blood.

21. निम्न अभिक्रियाओं के उत्पादों की प्रागुक्ति कीजिए :

(i)
$$CH_3 - C = O \xrightarrow{HCN} ?$$

 CH_3

(ii)
$$C_6H_5 - CH_2 - CH_3 \xrightarrow{\text{(a) KMnO}_4/\text{KOH}} ?$$

(iii)
$$CH_3COOH \xrightarrow{NH_3/\Delta}$$
?

3

3

Predict the products of the following reactions:

(i)
$$CH_3 - C = O \xrightarrow{HCN} ?$$

 CH_3

(ii)
$$C_6H_5 - CH_2 - CH_3 \xrightarrow{\text{(a) KMnO}_4/\text{KOH}} ?$$

(iii)
$$CH_3COOH \xrightarrow{NH_3/\Delta}$$
?

- **22.** (a) निम्न को आप कारण सहित कैसे समझाएँगे :
 - (i) लैन्थेनॉइडों की अपेक्षा ऐक्टिनॉयडों का रसायन अधिक जटिल है।
 - (ii) संक्रमण धातुएँ कॉम्प्लेक्स यौगिक बनाती हैं।
 - (b) निम्न समीकरण को पूर्ण कीजिए:

$$2~\mathrm{MnO_4^-}~+~6\mathrm{H^+}~+~5~\mathrm{SO_3^{2-}}\rightarrow$$

- (a) How would you account for the following:
 - (i) The chemistry of actinoids is more complicated as compared to lanthanoids.

3

- (ii) Transition metals form complex compounds.
- (b) Complete the following equation:

$$2 \text{ MnO}_{4}^{-} + 6 \text{H}^{+} + 5 \text{ SO}_{3}^{2-} \rightarrow$$

23. जवान बच्चों में मधुमेह और अवसाद (उदासी) की बढ़ती संख्या को देखकर, एक प्रसिद्ध स्कूल के प्रिंसिपल श्री लुगानी ने एक सेमिनार का आयोजन किया जिसमें अन्य प्रिंसिपलों और बच्चों के माता-पिताओं को आमंत्रित किया । यह निर्णय लिया गया कि स्कूलों में सड़े हुए खाने की वस्तुएँ बंद की जाएँ और स्वास्थ्यवर्धक वस्तुएँ जैसे सूप, लस्सी, दूध, आदि उपलब्ध कराई जाएँ । उन्होंने यह भी निर्णय लिया कि स्कूलों में रोज प्रातःकाल की ऐसेम्बली के समय बच्चों को आधा घंटे का शारीरिक व्यायाम अनिवार्य रूप से कराया जाए । छः माह के पश्चात्, श्री लुगानी ने अधिकतर स्कूलों में फिर स्वास्थ्य परीक्षण कराया और बच्चों के स्वास्थ्य में अनुपम सुधार पाया गया ।

उपर्युक्त विवरण को पढ़कर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) श्री लुगानी द्वारा किन मूल्यों (कम-से-कम दो) को प्रदर्शित किया गया ?
- (ii) एक विद्यार्थी के रूप में, आप इस विषय में कैसे जागरूकता फैलाएँगे ?
- (iii) प्रति-अवसादक इंग क्या हैं ? एक उदाहरण दीजिए ।
- (iv) एक ऐसे मीठाकारी पदार्थ का नाम दीजिए जो मधुमेह से पीड़ित रोगियों के लिए मिठाइयाँ बनाने में काम आता हो।

Seeing the growing cases of diabetes and depression among young children, Mr. Lugani, the principal of one reputed school organized a seminar in which he invited parents and principals. They all resolved this issue by strictly banning junk food in schools and introducing healthy snacks and drinks like soup, lassi, milk, etc. in school canteens. They also decided to make compulsory half an hour of daily physical activities for the students in the morning assembly. After six months, Mr. Lugani conducted the health survey in most of the schools and discovered a tremendous improvement in the health of the students.

After reading the above passage, answer the following questions:

- (i) What are the values (at least two) displayed by Mr. Lugani?
- (ii) As a student, how can you spread awareness about this issue?
- (iii) What are antidepressant drugs? Give an example.
- (iv) Name the sweetening agent used in the preparation of sweets for a diabetic patient.
- 24. (a) निम्न को कारण देते हुए समझाइए :
 - (i) अंतर्हेलोजनें अपेक्षाकृत विशुद्ध हैलोजनों के अधिक क्रियाशील होते हैं।
 - (ii) सामान्य तापमान पर N_2 कम सक्रिय है ।
 - (iii) अपचयनी व्यवहार NH_3 से BiH_3 की ओर बढ़ता है ।
 - (b) निम्न की संरचनाएँ आरेखित कीजिए:
 - (i) $H_4P_2O_7$ (पाइरोफ़ॉस्फ़ोरिक अम्ल)
 - (ii) XeF₄

5

- (a) जब सफ़ेद फ़ॉस्फ़ोरस को NaOH के सांद्र विलयन के साथ तप्त किया जाता है तब कौन-सी ज़हरीली गैस निकलती है ? संबद्ध रासायनिक समीकरण को लिखिए।
- (b) कौन-सी उत्कृष्ट गैस का क्वथनांक न्यूनतम है ?
- (c) क्लोरीन की अपेक्षा फ्लुओरीन प्रबलतर उपचायक है। क्यों ?
- (d) H_3PO_3 को जब तप्त किया जाता है तब क्या होता है ?
- (e) समीकरण को पूरा कीजिए:

$$PbS + O_3 \rightarrow$$

5

- (a) Account for the following:
 - (i) Interhalogens are more reactive than pure halogens.
 - (ii) N_2 is less reactive at room temperature.
 - (iii) Reducing character increases from NH₃ to BiH₃.
- (b) Draw the structures of the following:
 - (i) $H_4P_2O_7$ (Pyrophosphoric acid)
 - (ii) XeF₄

OR

- (a) Which poisonous gas is evolved when white phosphorus is heated with conc. NaOH solution? Write the chemical equation involved.
- (b) Which noble gas has the lowest boiling point?
- (c) Fluorine is a stronger oxidizing agent than chlorine. Why?
- (d) What happens when H_3PO_3 is heated?
- (e) Complete the equation:

$$PbS + O_3 \rightarrow$$

25.	(a)	प्रत्येक कीजि	5 केस के लिए एक उपयुक्त उदाहरण देते हुए निम्न अभिक्रियाओं को प्रदर्शित ए :	
		(i)	हॉफमान ब्रोमेमाइड निम्नीकरण अभिक्रिया	
		(ii)	डाइएज़ोटीकरण (डाइएज़ोटीजेशन)	
		(iii)	गैब्रिल थैलिमाइड संश्लेषण	
	(b)	यौगिव	हों के निम्न युग्मों के बीच अन्तर स्पष्ट कीजिए :	
		(i)	ऐनिलीन और N-मेथिलऐनिलीन में	
		(ii)	$(\mathrm{CH_3})_2\mathrm{NH}$ और $(\mathrm{CH_3})_3\mathrm{N}$ में	5
			अथवा	
	(a)		न डाइएज़ोनियम क्लोराइड $(\mathrm{C_6H_5N_2^+Cl^-})$ निम्न अभिकारकों से अभिक्रिया है तो प्राप्त मुख्य उत्पादों की संरचनाएँ लिखिए :	
		(i)	CuCN/KCN	
		(ii)	$\mathrm{H_{2}O}$	
		(iii)	$\mathrm{CH_{3}CH_{2}OH}$	
	(b)	निम्न	को व्यवस्थित कीजिए :	
		(i)	${ m C_2H_5NH_2,C_2H_5OH,(CH_3)_3N}$ को इनके क्वथनांक के बढ़ते क्रम में	
		(ii)	ऐनिलीन, p-नाइट्रोऐनिलीन, p-मेथिलऐनिलीन को इनकी बढ़ती क्षारीय क्षमता के क्रम में	5
	(a)	Illus case	trate the following reactions giving suitable example in each :	
		(i)	Hoffmann bromamide degradation reaction	
		(ii)	Diazotisation	
		(iii)	Gabriel phthalimide synthesis	
	(b)	Dist	inguish between the following pairs of compounds:	
		(i)	Aniline and N-methylaniline	
		(ii)	$(\mathrm{CH_3})_2\mathrm{NH}$ and $(\mathrm{CH_3})_3\mathrm{N}$	

OR

- (a) Write the structures of main products when benzene diazonium chloride $(C_6H_5\,N_2^+\,Cl^-)$ reacts with the following reagents :
 - (i) CuCN/KCN
 - (ii) H₂O
 - (iii) CH₃CH₂OH
- (b) Arrange the following:
 - (i) $C_2H_5NH_2$, C_2H_5OH , $(CH_3)_3N$ in the increasing order of their boiling point
 - (ii) Aniline, p-nitroaniline, p-methylaniline in the increasing order of their basic strength
- **26.** (a) अभिक्रिया दर क्या है ? दो कारकों को लिखिए जो अभिक्रिया की दर को प्रभावित करते हैं।
 - (b) एक प्रथम कोटि अभिक्रिया का दर नियतांक तापमान को $27^{\circ}\mathrm{C}$ से $37^{\circ}\mathrm{C}$ करने पर 4×10^{-2} से बढ़कर 8×10^{-2} हो जाता है । इसकी सिक्रियण ऊर्जा (E_a) का परिकलन कीजिए ।

5

5

 $(\log\,2=0.301,\ \log\,3=0.4771,\ \log\,4=0.6021)$

अथवा

- (a) अभिक्रिया $A + B \to P$ के लिए दर दी गई है दर = $k [A] [B]^2$
 - (i) यदि B का सांद्रण दुगुना किया जाए तो अभिक्रिया की दर कैसे प्रभावित होती है ?
 - (ii) A अधिक मात्रा में विद्यमान हो तो अभिक्रिया की सम्पूर्ण कोटि क्या होगी ?
- (b) एक प्रथम कोटि की अभिक्रिया 50% पूर्ण होने में $23\cdot1$ मिनट लेती है । इस अभिक्रिया को 75% पूर्ण होने में जो समय लगेगा उसका परिकलन कीजिए ।

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

56/3/C

- (a) What is rate of reaction? Write two factors that affect the rate of reaction.
- (b) The rate constant of a first order reaction increases from 4×10^{-2} to 8×10^{-2} when the temperature changes from 27°C to 37°C . Calculate the energy of activation (E_a).

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

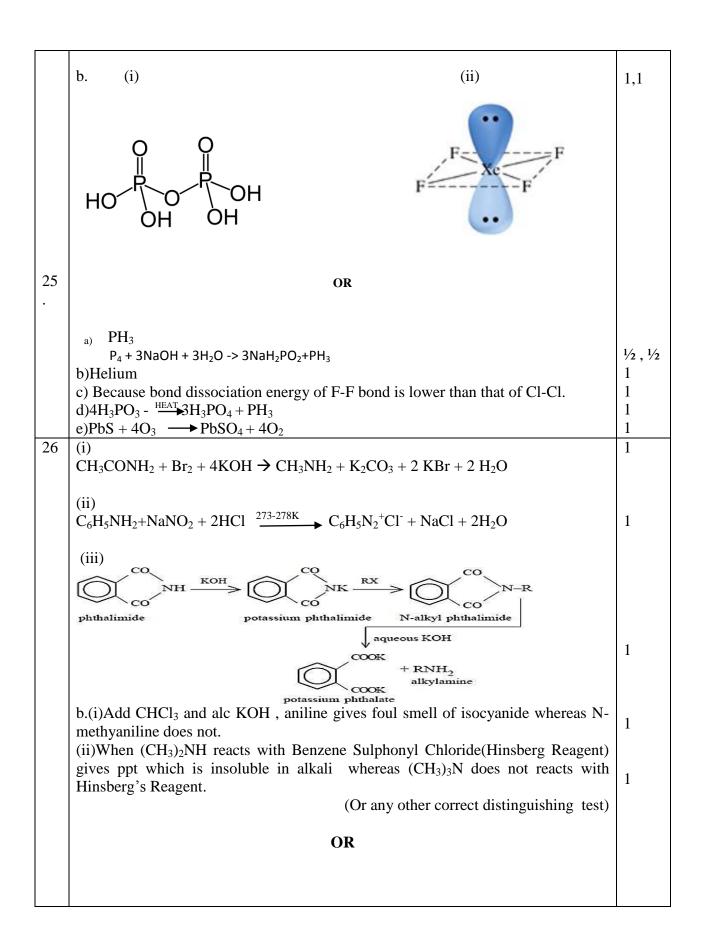
OR

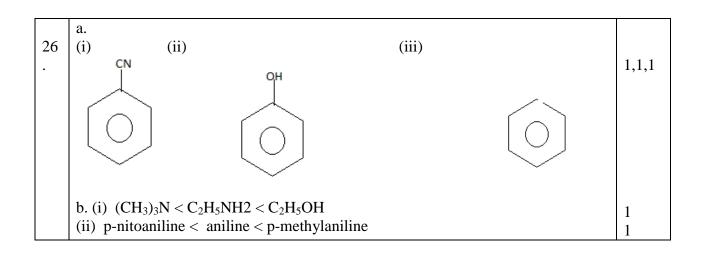
- (a) For a reaction $A + B \rightarrow P$, the rate is given by $Rate = k [A] [B]^2$
 - (i) How is the rate of reaction affected if the concentration of B is doubled?
 - (ii) What is the overall order of reaction if A is present in large excess?
- (b) A first order reaction takes 23·1 minutes for 50% completion. Calculate the time required for 75% completion of this reaction.

$$(\log 2 = 0.301, \log 3 = 0.4771, \log 4 = 0.6021)$$

MARKING SCHEME CHEMISYRY

(CODE NO.: 56/3/C)


Q	Value points	Mark
1	White phosphorous, because of angular strain in P ₄ molecule/ discrete tetrahedral	1/2 , 1/2
	unit.	, , ,
2		1/2
	ÇH₃	
	H₃C−Ċ−Br	
	CH₃ H₃C−C−Br CH₃	
	Because carbocation intermediate derived from (CH ₃) ₃ CBr is more stable than carbocation from CH ₃ CH ₂ Br.	1/2
3	(i)Electrophoresis (ii) by mixing two oppositely charged sols (iii) by boiling (iv) by persistent dialysis (v) by addition of electrolyte (any one)	1
4	X_4Y_3	1
5	2-Methylpropane-1,3-diol	1
6	Greater number of unpaired electrons, greater the interatomic interactions leading	1
	to strong metallic bonding.	
	Zn ,no unpaired electrons hence weak metallic bonding.	1/2 ,1/2
7	(i) pentaamminenitrito-N-cobalt(III) nitrate	1
	(ii) $K_2[Ni(CN)_4]$	1
8	(a) H^+ (aq) + e- \rightarrow 1/2 H_2 (g) $E^\circ = 0.00$ V is feasible at cathode because its reduction potential is higher than the other reaction.	1/2 , 1/2
	b. Because the overall reaction doesn't involve any ion in the solution whose concentration changes during its lifetime.	1
9	(i) CH ₃ MgBr , H ₃ O ⁺	1
	(ii) Cl_2 , P	1
10	It states that solubility of gas in liquid is directly proportional to partial pressure of the gas in equilibrium with the solution.	1
	With increase in temperature K_H value increases but solubility of gas in liquid decreases. / $K_H\alpha$ 1/solubility	
	2-	1
	OR	
10	It states for solution containing volatile components the partial vapor pressure of each component of the solution is directly proportional to its mole fraction present	
	in the solution.	1


	Ideal Solution	Non Ideal	
	1. It obeys Raoult's Law over		
	entire range of concentration		
	of solution.		
	2.Solute – Solvent interaction	Solute – Solvent interaction is	1/2 +
	is nearly same as in pure	not same as solute-solute or	1/2
	solvent.	solvent –solvent interactions.	-
		(or any other correct difference)	
11	(i) van Arkel method		1
	(ii) CO acts as reducing agent	:4: 1 A C 1	
	(iii) Because ΔS becomes more po	ositive, and ΔG becomes negative.	1
12	(a)(i) Because actinoids are radio	active and show wide range of oxidation states.	1
		plex compounds due to small size, high ionic	
	charge, availability of d orbitals.	-	1
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
12	b. $2\text{MnO}_4^- + 6\text{H} + 5 \text{ SO}_3^{2-} \rightarrow 5\text{SO}_3^{2-} \rightarrow 5$	$O_4^{2^3} + 3H_2O + 2Mn^{2^4}$	1
13	- +	, +	1
	$A \setminus A \setminus A$		
	en \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	en en en	
	\ /	Į,	
	(i) en	WI	
	cis (ii) t ₂ g ⁴ / diagram.	trans	1
		ng weak field ligand does not pair d electrons.	1
	, , = =	rong field ligand pairs up the d electrons.	1
14	(i) CH ₃ – CH(OH) – CN		1
	(ii) C ₆ H ₅ COOH		1
1.5	(iii)CH ₃ CONH ₂		1
15			
	- N	0	
	H_2C		
	_{H₂} C CH	\mathbb{Z}_2	
	(i) Caprolactum Caprolactum		1
	(1) Caprotactum		

	(ii) Phenol + Formaldehyde	
	он	
		1
	+ HCHO (iii) 1,3-Butadiene + Acrylonitrile	
	CH ₂ =CH-CH=CH ₂ + CH ₂ =CH-CN	1
	(Note: half mark for structure/s and half mark for name/s)	
16	(i) Starch	1
	(ii) Native Protein found in a biological system with a unique 3-D structure and	
	biological activity is called a native protein. Denatured protein is the protein with no biological activity.	1
	(iii) Vitamin-K	1
17	$\Delta T_f = i \times K_f \times m$	1/2
	For $CaCl_2$ $i = 3$	1/2
	AT (: W W W W)	
	$\Delta T_f = (i \times K_f \times W_B \times 1000) / (M_B \times W_A)$	
	$2 = 3 \times 1.86 \times W_B \times 1000 / 111 \times 500$	1
	$W_B = 19.89 g$	1
10	1. 72 M / 3 N	1/
18	$d = Z xM / a^3 x N_o$	1/2
	$10 \text{ g/cm}^3 = \text{Z x } 81 \text{ g/mol} / (3 \text{ x } 10^{-8} \text{ cm})^3 \text{ x } (6.023 \text{ x } 10^{23} \text{ /mol})$	1/2
	Z = 2.007	1
19	Nature of cubic unit cell = bcc	1
	HBr AgF	1
	(i) CH_3 - CH = CH_2	
	peroxide	
	(::)	
	(ii) Cl Cl	
	+ CH Cl Anhyd. AlCl ₃ CH ₃	
	+ CH ₃ Cl	
		1
		I

	DCI /DCI VCNI	
	$\begin{array}{ccc} & & & & & & & & \\ \text{(iii) } C_2H_5\text{OH} & & & & & \\ \text{(iii) } C_2H_5\text{OH} & & & & \\ \end{array} \xrightarrow{\hspace{0.5cm}} C_2H_5\text{Cl} & & & \\ \xrightarrow{\hspace{0.5cm}} C_2H_5\text{CN} & & & \\ \end{array}$	1
	OR	
	он	
10	O2NNO2	
19	UZN TO T	
	(i) CH_3CH_2 $CH=CH_2$ (ii)	1,1,1
	(iii) CH ₃ NC	
20	(i) Because –NO ₂ is an electron withdrawing group.	1
20	(ii) Due to H-Bonding	1
	(iii) Reaction occurs by S $_{N}1$ mechanism., 3^{0} -carbocation (CH ₃) $_{3}C^{+}$ is more	1
21	stable than CH_3^+ $E_{cell}^0 = E_R^0 - E_L^0$	1
	=0.00-(-0.14)	
	$E^{\circ}_{cell} = +0.14V$	1
	$E_{cell} = E^{\circ}_{cell} - \frac{0.059 \text{ V}}{0.059 \text{ log } [\text{Sn}^{2+}]}$ $n \qquad [\text{H}^{+}]^{2}$	1
	$\mathrm{E_{cell}}$ = $\mathrm{E^{\circ}}_{\mathrm{cell}}$ - $0.059\mathrm{V}_{\mathrm{cell}}$ log $[0.001]$	
	$\frac{2}{2} \left[0.01\right]^2$	1
	= +0.14 - 0.0295 V log10	
22	$E_{cell} = 0.1105 \text{ V}$	1
22	(i)Because physisorption is exothermic process, so it decreases with increase in temperature.	1
	(ii)Because alum coagulates the impurities present in water.	1
	(iii) Due to continuous unbalanced bombardment / zig-zag motion of particles by	
23	the molecules of dispersion medium/ it does not allow the particles to settle down. (i) Concern, Compassion, caring, empathy (any two)	$\frac{1}{\frac{1}{2},\frac{1}{2}}$
23	(ii) By organizing rallies, posters, street play, public speech(any other relevant	$\begin{vmatrix} 72,72\\1 \end{vmatrix}$
	answer)	
	(iii) Anti depressant drugs are those which inhibit depression E.g. Iproniazide, Phenelzine (or any other)	1/2 , 1/2
	(iv) Saccharine / Sucralose/Alitame/Aspartame(any one)	$\begin{vmatrix} 72, 72 \\ 1 \end{vmatrix}$
24	a.)Rate of reaction is defined as change in concentration of reactants or	1
	products per unit time.	16 16
	Factors: concentration of reactant, temperature, pressure, surface area (any two)	1/2, 1/2

	b. $\log (k_2/k_1) = \text{Ea}/2.303 \text{ R} [1/T_1 - 1/T_2]$	1
	$log(8 \times 10^{-2} / 4 \times 10^{-2}) = E_a/2.303 \times 8.314 [1/300 - 1/310]$	1
	$log2 = Ea/2.303 \times 8.314 [1/300 - 1/310]$ Ea = 53598.59 J/mol or 53.6 kJ/mol	1
	OR	
24	(a)(i) Rate becomes 4 times (ii) 2 nd order	1
	b) $t_{1/2} = 0.693$	1
	23.1 min = <u>0.693</u>	
	k	
	$k = 0.03 \text{min}^{-1}$	1
	$k = 2.303 \log [A_0]$ t [A]	1/2
	t = <u>2.303</u> log <u>100</u> 0.03 25	1/2
	t = <u>2.303</u> x 0.6021 min 0.03	
	t = 46.22 min	1
25	(i) X-X' bond in inter halogens is weaker than X-X in halogens	1
	(ii) High bond dissociation energy/ due to presence of triple bond.	1
	(iii)Because bond dissociation enthalpy decreases from NH ₃ to BiH ₃ .	1

