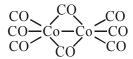

TEST PAPER OF JEE(MAIN) EXAMINATION – 2019 (Held On Friday 11th JANUARY, 2019) TIME : 02 : 30 PM To 05 : 30 PM CHEMISTRY

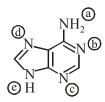
Е

Sol.



6. The number of bridging CO ligand (s) and Co-Co bond (s) in CO₂(CO)g, respectively are :-

- (1) 0 and 2 (2) 2 and 0
- (3) 4 and 0 (4) 2 and 1


Ans. (4)

Sol.

Bridging CO are 2 and Co – Co bond is 1.

7. In the following compound,

the favourable site/s for protonation is/are :-

(1) (b), (c) and (d) (2) (a)

(3) (a) and (e) (4) (a) and (d)

Ans. (1)

Sol. Localised lone pair e⁻.

8. The higher concentration of which gas in air can cause stiffness of flower buds ?

(1) SO_2 (2) NO_2 (3) CO_2 (4) CO

Ans. (1)

Sol. Due to acid rain in plants high concentration of SO_2 makes the flower buds stiff and makes them fall.

9. The correct match between item I and item II is :-

	Item I		Item II
(A)	Allosteric	(P)	Molecule binding
	effect		to the active site
			of enzyme
(B)	Competitive	(Q)	Molecule crucial
	inhibitor		for
			communication in
			the body
(C)	Receptor	(R)	Molecule binding
	-		to a site other than
			the active site of
			enzyme
(D)	Poison	(S)	Molecule binding
			to the enzyme
			covalently

(1) (A)
$$\rightarrow$$
(P); (B) \rightarrow (R); (C) \rightarrow (S); (D) \rightarrow (Q)
(2) (A) \rightarrow (R); (B) \rightarrow (P); (C) \rightarrow (S); (D) \rightarrow (Q)

$$(3) (A) \rightarrow (P); (B) \rightarrow (R); (C) \rightarrow (Q); (D) \rightarrow (S)$$

(4) (A)
$$\rightarrow$$
(R); (B) \rightarrow (P); (C) \rightarrow (Q); (D) \rightarrow (S)

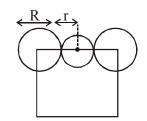
Ans. (4)

10. The radius of the largest sphere which fits properly at the centre of the edge of body centred cubic unit cell is : (Edge length is represented by 'a') :-

(1) 0.134 a	(2) 0.027 a
(3) 0.067 a	(4) 0.047 a

Ans. (3)

Sol.


a = 2(R + r)

$$\frac{a}{2} = (R + r) \dots (1)$$

 $a\sqrt{3} = 4R \dots (2)$
Using (1) & (2)

$$\frac{a}{2} = \frac{a\sqrt{3}}{4} = r$$

$$a\left(\frac{2-\sqrt{3}}{4}\right) = 1$$

$$r = 0.067 a$$

Ε

- 11. Among the colloids cheese (C), milk (M) and smoke (S), the correct combination of the dispersed phase and dispersion medium, respectively is :-
 - C : solid in liquid; M : solid in liquid;
 S : solid in gas
 - (2) C : solid in liquid; M : liquid in liquid;S : gas in solid
 - (3) C : liquid in solid; M : liquid in solid;S : solid in gas
 - (4) C : liquid in solid; M : liquid in liquid;S : solid in gas

Ans. (4)

Sol.

	Dispersed Phase	Dispersion Medium
Cheese	Liquid	Solid
Milk	Liquid	Liquid
Smoke	Solid	Gas

- 12. The reaction that does NOT define calcination is:-
 - (1) $ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2$

(2)
$$\operatorname{Fe}_2\operatorname{O}_3: \operatorname{XH}_2\operatorname{O} \xrightarrow{\Delta} \operatorname{Fe}_2\operatorname{O}_3 + \operatorname{XH}_2\operatorname{O}$$

(3) $CaCO_3 \cdot MgCO_3 \xrightarrow{\Delta} CaO + MgO + 2 CO_2$

(4) 2 Cu₂S + 3 O₂
$$\xrightarrow{\Delta}$$
 2 Cu₂O + 2 SO₂

Ans. (4)

Sol. Calcination in carried out for carbonates and oxide ores in absence of oxygen. Roasting is carried out mainly for sulphide ores in presence of excess of oxygen.

13. The reaction,

MgO(s) + C(s)→Mg(S) + CO(g), for which $\Delta_r H^\circ$ = + 491.1 kJ mol⁻¹ and $\Delta_r S^\circ$ = 198.0 JK⁻¹ mol⁻¹, is not feasible at 298 K. Temperature above which reaction will be feasible is :-

(1)	1890.0	Κ	(2)	2480.3	K
(3)	2040.5	Κ	(4)	2380.5	K

Sol.
$$T_{eq} = \frac{\Delta H}{\Delta S}$$
$$= \frac{491.1 \times 1000}{198}$$
$$= 2480.3 \text{ K}$$

14. Given the equilibrium constant : KC of the reaction : $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$ is 10×10^{15} , calculate the E^{0}_{cell} of this reaction at

298 K

$$\left[2.303 \frac{\text{RT}}{\text{F}} \text{ at } 298 \text{ K} = 0.059 \text{ V}\right]$$
(1) 0.04736 V
(2) 0.4736 V
(3) 0.4736 mV
(4) 0.04736 mV

Ans. (2)

Sol.
$$E_{cell} = E_{cell}^{\circ} - \frac{0.059}{n} \log Q$$

At equilibrium
$$E_{Cell}^{\circ} = \frac{0.059}{2} \log 10^{16}$$
$$= 0.059 \times 8$$
$$= 0.472 \text{ V}$$

15. The hydride that is NOT electron deficient is:-

(1)
$$B_2H_6$$
 (2) AlH_3

$$(3) \operatorname{SiH}_4 \qquad (4) \operatorname{GaH}_3$$

Ans. (3)

Sol. (1) B_2H_6 : Electron deficient

(2)
$$AlH_3$$
: Electron deficient

(3) SiH_4 : Electron precise

JEE (Main) Examination-2019/Evening Session/11-01-2019

19. 16. The standard reaction Gibbs energy for a The reaction $2X \rightarrow B$ is a zeroth order reaction. chemical reaction at an absolute temperature T is given by $\Delta_{\rm r} {\rm G}^{\rm o} = {\rm A} - {\rm Bt}$ concentration of 0.2 M will be :-Where A and B are non-zero constants. Which (1) 18.0 h (2) 7.2 h (3) 9.0 h of the following is TRUE about this reaction ? Ans. (1) (1) Exothermic if B < 0Sol. For zero order (2) Exothermic if A > 0 and B < 0 $[A_0] - [A_t] = kt$ (3) Endothermic if A < 0 and B > 0 $0.2 - 0.1 = k \times 6$ (4) Endothermic if A > 0 $k = \frac{1}{60}$ M/hr Ans. (4) Sol. Theory 17. K_2 HgI₄ is 40% ionised in aqueous solution. The and $0.5-0.2 = \frac{1}{60} \times t$ value of its van't Hoff factor (i) is :-(1) 1.8(2) 2.2(3) 2.0(4) 1.6t = 18 hrs. Ans. (1) 20. Sol. For K₂[HgI₄] i = 1 + 0.4 (3 - 1)carbylamine test. Compound 'X' is :-= 1.8(1) CH₃COCH₂NHCH₃ 18. The de Broglie wavelength (λ) associated with (2) CH₃CH₂COCH₂NH₂ (3) CH₃CH₂CH₂CONH₂ a photoelectron varies with the frequency (v)(4) $CH_3CON(CH_3)_2$ of the incident radiation as, $[v_0]$ is thrshold frequency] : Ans. (3) Sol. 1

(1)
$$\lambda \propto \frac{1}{(v-v_0)^{\frac{3}{2}}}$$
 (2) $\lambda \propto \frac{1}{(v-v_0)^{\frac{1}{2}}}$
(3) $\lambda \propto \frac{1}{(v-v_0)^{\frac{1}{4}}}$ (4) $\lambda \propto \frac{1}{(v-v_0)}$

Ans. (2)

Sol. For electron

$$\lambda_{DB} = \frac{\lambda}{\sqrt{2mK.E.}} \quad (\text{de broglie wavelength})$$

By photoelectric effect
$$h\nu = h\nu_0 + KE$$

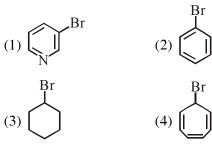
$$KE = h\nu -h\nu_0$$

$$\lambda_{DB} = \frac{h}{\sqrt{2m \times (h\nu - h\nu_0)}}$$

$$\lambda_{DB} \propto \frac{1}{(\nu - \nu_0)^{\frac{1}{2}}}$$

If the initial concentration of X is 0.2 M, the half-life is 6 h. When the initial concentration of X is 0.5 M, the time required to reach its final (4) 12.0 h

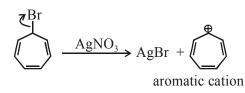
A compound 'X' on treatment with Br₂/NaOH, provided C_3H_0N , which gives positive


$$[X] \xrightarrow{Br_2} C_3H_9N \xrightarrow{CHCl_3} CH_3CH_2CH_2-NC$$

Hoff mann's Carbylamine
Bromaide Reaction
degradation

Thus [X] must be aride with oen carbon more than is amine.

Ε


Thus [X] is CH₂CH₂CH₂CONH₂

21. Which of the following compounds will produce a precipitate with AgNO₃?

Ans. (4)

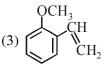
Sol.

as it can produce aromatic cation so will produce precipitate with $AgNO_3$.

22. The relative stability of +1 oxidation state of group 13 elements follows the order :-

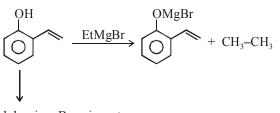
 $(3) Al < Ga < In < Tl \quad (4) Ga < Al < In < Tl$

Ans. (3)


Sol. Due to inert pair effect as we move down the group in 13th group lower oxidation state becomes more stable.

 $Al < Ga < In < T\ell$

23. Which of the following compounds reacts with ethylmagnesium bromide and also decolourizes bromine water solution :-


(2)
$$CH_2-CO_2CH_3$$

Ans. (4)

Sol.

declolourizes Bromin water

24. Match the following items in column I with the corresponding items in column II.

Column I		Column II	
(i)	Na ₂ CO ₃ ·10 H ₂ O	(P)	Portland cement ingredient
(ii)	Mg(HCO ₃) ₂	(Q)	Castner-Keller process
(iii)	NaOH	(R)	Solvay process
(iv)	$Ca_3Al_2O_6$	(S)	Temporary hardness

(1) (i)
$$\rightarrow$$
(C); (ii) \rightarrow (B); (iii) \rightarrow (D); (iv) \rightarrow (A)

(2) (i)
$$\rightarrow$$
(C); (ii) \rightarrow (D); (iii) \rightarrow (B); (iv) \rightarrow (A)

(3) (i)
$$\rightarrow$$
(D); (ii) \rightarrow (A); (iii) \rightarrow (B); (iv) \rightarrow (C)

(4) (i)
$$\rightarrow$$
(B); (ii) \rightarrow (C); (iii) \rightarrow (A); (iv) \rightarrow (D)

Ans. (2)

- Sol. $Na_2CO_3.10H_2O \rightarrow Solvay \text{ process}$ $Mg(HCO_3)_2 \rightarrow Temporary \text{ hardness}$ $NaOH \rightarrow Castner-kellner cell$ $Ca_3Al_2O_6 \rightarrow Portland cement$
- **25.** 25 ml of the given HCl solution requires 30 mL of 0.1 M sodium carbonate solution. What is the volume of this HCl solution required to titrate 30 mL of 0.2 M aqueous NaOH solution?

(1) 25 mL (2) 50 mL (3) 12.5 mL(4) 75 mL

Sol. HCl with Na₂CO₃

Eq. of HCl = Eq. of Na_2CO_3

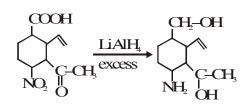
$$\frac{25}{1000} \times M \times 1 = \frac{30}{1000} \times 0.1 \times 2$$

$$M = \frac{6}{25}M$$

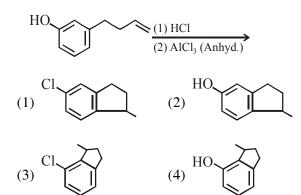
Eq of HCl = Eq. of NaOH

$$\frac{6}{25} \times 1 \times \frac{V}{1000} = \frac{30}{1000} \times 0.2 \times 1$$

$$V = 25 ml$$

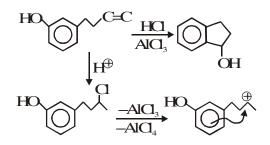

JEE (Main) Examination-2019/Evening Session/11-01-2019

26.	$\underline{A} \xrightarrow{4 \text{ KOH, } O_2} 2\underline{B} + 2 \text{ H}_2$ (Green)	0	
	$3 \xrightarrow{B} \xrightarrow{4 \text{ HCl}} 2 \xrightarrow{C} + \text{MnO}_2 + 2 \text{ H}_2\text{O}$ (Purple)		
	$2 \xrightarrow{\text{H}_2\text{O}, \text{KI}} 2 \xrightarrow{\text{A}} + 2\text{KOH} + \underline{D}$		
	In the above sequence of reactions,		
	\underline{A} and \underline{D} respectively, are :-		
	(1) KIO_3 and MnO_2	(2) KI and K_2MnO_4	
	(3) MnO_2 and KIO_3	(4) KI and $KMnO_4$	
Ans.	(3)		
Sol.	$MnO_{2}(A) \xrightarrow{_{4KOH,O_{2}}} 2K_{2}MnO_{4}(B) + 2H_{2}O$		
		Green)	
	$3K_2MnO_4(B) \xrightarrow{4HCl} 2$		
		(Purple)	
	$2KMnO_4(C) \xrightarrow{H_2O, KI} \rightarrow$		
	$A \rightarrow MnO_2$	KIO ₃ (D)	
	$A \rightarrow \text{KIO}_2$ D $\rightarrow \text{KIO}_3$		
27.	The coordination	number of Th in	
	$K_4[Th(C_2O_4]_4(OH_2)_2]$ is	3 :-	
	$\left(C_2 O_4^{2-} = Oxalato\right)$		
	(1) 6 (2) 10	(3) 14 (4) 8	
Ans.	(2)		
Sol.	$C_2O_4^{2-}$ (oxalato) : bider	ntate	
	H ₂ O (aqua) : Monoden	itate	
28.	The major product obt	ained in the following	
	reaction is :-		
	O OH	Li AlH ₄	
	CH ₃	(excess)	
	ΥΎ		
	NO ₂ O O _N OH	ОН	
	ľ.	$\int $	
	(1) CH ₃	(2) CH ₃	
	$\mathbf{Y}_{\mathrm{NO}_2} \mathbf{Y}_{\mathrm{OH}}$	Υ Υ Υ NH ₂ OH	
	OH	OH	
	\wedge	\wedge	
	(3) CH ₃	(4) CH ₃	
	NH ₂ OH	NO ₂ OH	
Anc	(2)		


Ans. (2)

6

Sol.



LiAlH₄ will not affect C=C in this compound.
29. The major product of the following reaction is :-

Ans. (2)

Sol.

30. For the equilibrium, 2H₂O ⇒ H₃O⁺ + OH⁻, the value of ΔG° at 298 K is approximately :-(1) -80 kJ mol⁻¹ (2) -100 kJ mol⁻¹ (3) 100 kJ mol⁻¹ (4) 80 kJ mol⁻¹

Ans. (4)

Sol.

$$2H_2O = H_3O^+ + OH^- \quad K = 10^{-14}$$
$$\Delta G^\circ = -RT \ \ln K$$
$$= \frac{-8.314}{1000} \times 298 \times \ln 10^{-14}$$

Е